// *************************************************************************** // *************************************************************************** // Copyright (C) 2018-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module underflow_tb; parameter VCD_FILE = {`__FILE__,"cd"}; parameter NUM_OF_CHANNELS = 8; parameter SAMPLES_PER_CHANNEL = 4; `include "tb_base.v" initial begin #1500000 if (failed == 1'b0) $display("SUCCESS"); else $display("FAILED"); $finish; end localparam NUM_OF_PORTS = SAMPLES_PER_CHANNEL * NUM_OF_CHANNELS; reg fifo_rd_en = 1'b1; wire [NUM_OF_PORTS*8-1:0] fifo_rd_data; wire fifo_rd_valid; wire fifo_rd_underflow; reg s_axis_valid = 1'b1; wire s_axis_ready; reg [NUM_OF_PORTS*8-1:0] s_axis_data = {NUM_OF_PORTS*8{1'b1}}; reg [NUM_OF_CHANNELS-1:0] enable = {NUM_OF_CHANNELS{1'b1}}; integer counter = 0; always @(posedge clk) begin if (fifo_rd_underflow == 1'b1 && fifo_rd_data != 'h00) begin failed <= 1'b1; end if (fifo_rd_valid == 1'b1 && fifo_rd_data != {NUM_OF_PORTS*8{1'b1}}) begin failed <= 1'b1; end end always @(posedge clk) begin if (reset == 1'b1) begin counter <= 0; s_axis_valid <= 1'b1; end else begin if (s_axis_valid == 1'b0) begin if (counter == 8) begin s_axis_valid <= 1'b1; end counter <= counter + 1; end else if (s_axis_ready == 1'b1) begin s_axis_valid <= 1'b0; counter <= 0; end end end always @(posedge clk) begin fifo_rd_en <= $random & 1; end util_upack2_impl #( .NUM_OF_CHANNELS(NUM_OF_CHANNELS), .SAMPLES_PER_CHANNEL(SAMPLES_PER_CHANNEL), .SAMPLE_DATA_WIDTH(8) ) i_unpack ( .clk(clk), .reset(reset), .enable(enable), .fifo_rd_en({NUM_OF_CHANNELS{fifo_rd_en}}), .fifo_rd_data(fifo_rd_data), .fifo_rd_valid(fifo_rd_valid), .fifo_rd_underflow(fifo_rd_underflow), .s_axis_valid(s_axis_valid), .s_axis_ready(s_axis_ready), .s_axis_data(s_axis_data)); endmodule