// *************************************************************************** // *************************************************************************** // Copyright (C) 2019-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps // // A 4-wire to 3-wire SPI converter, supporting maximum 8 slaves. // The expected transfer format is defined in ADI_SPI technical specification // (https://wiki.analog.com/_media/resources/technical-guides/adispi_rev_1p0_customer.pdf) // // 16 bit instruction followed by N x 8 bits of data; the MSB bit of the // instruction defines the direction of the SDIO during data transfer. (READ // is 1 and WRITE is 0) // module ad_3w_spi #( parameter NUM_OF_SLAVES = 8 ) ( input [NUM_OF_SLAVES-1:0] spi_csn, input spi_clk, input spi_mosi, output spi_miso, inout spi_sdio, output spi_dir ); // internal registers reg [ 5:0] spi_count = 'd0; reg spi_rd_wr_n = 'd0; reg spi_enable = 'd0; // internal signals wire spi_csn_s; wire spi_enable_s; // check on rising edge and change on falling edge assign spi_csn_s = & spi_csn; assign spi_dir = ~spi_enable_s; assign spi_enable_s = spi_enable & ~spi_csn_s; always @(posedge spi_clk or posedge spi_csn_s) begin if (spi_csn_s == 1'b1) begin spi_count <= 6'd0; spi_rd_wr_n <= 1'd0; end else begin spi_count <= (spi_count < 6'h3f) ? spi_count + 1'b1 : spi_count; if (spi_count == 6'd0) begin spi_rd_wr_n <= spi_mosi; end end end always @(negedge spi_clk or posedge spi_csn_s) begin if (spi_csn_s == 1'b1) begin spi_enable <= 1'b0; end else begin if (spi_count == 6'd16) begin spi_enable <= spi_rd_wr_n; end end end // io butter assign spi_miso = spi_sdio; assign spi_sdio = (spi_enable_s == 1'b1) ? 1'bz : spi_mosi; endmodule