// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module up_xfer_cntrl #( parameter DATA_WIDTH = 8 ) ( // up interface input up_rstn, input up_clk, input [(DATA_WIDTH-1):0] up_data_cntrl, output up_xfer_done, // device interface input d_rst, input d_clk, output [(DATA_WIDTH-1):0] d_data_cntrl ); // internal registers reg up_xfer_state_m1 = 'd0; reg up_xfer_state_m2 = 'd0; reg up_xfer_state = 'd0; reg [ 5:0] up_xfer_count = 'd0; reg up_xfer_done_int = 'd0; reg up_xfer_toggle = 'd0; reg [(DATA_WIDTH-1):0] up_xfer_data = 'd0; reg d_xfer_toggle_m1 = 'd0; reg d_xfer_toggle_m2 = 'd0; reg d_xfer_toggle_m3 = 'd0; reg d_xfer_toggle = 'd0; reg [(DATA_WIDTH-1):0] d_data_cntrl_int = 'd0; // internal signals wire up_xfer_enable_s; wire d_xfer_toggle_s; // device control transfer assign up_xfer_done = up_xfer_done_int; assign up_xfer_enable_s = up_xfer_state ^ up_xfer_toggle; always @(posedge up_clk) begin if (up_rstn == 1'b0) begin up_xfer_state_m1 <= 'd0; up_xfer_state_m2 <= 'd0; up_xfer_state <= 'd0; up_xfer_count <= 'd0; up_xfer_done_int <= 'd0; up_xfer_toggle <= 'd0; up_xfer_data <= 'd0; end else begin up_xfer_state_m1 <= d_xfer_toggle; up_xfer_state_m2 <= up_xfer_state_m1; up_xfer_state <= up_xfer_state_m2; up_xfer_count <= up_xfer_count + 1'd1; up_xfer_done_int <= (up_xfer_count == 6'd0) ? ~up_xfer_enable_s : 1'b0; if ((up_xfer_count == 6'd1) && (up_xfer_enable_s == 1'b0)) begin up_xfer_toggle <= ~up_xfer_toggle; up_xfer_data <= up_data_cntrl; end end end assign d_data_cntrl = d_data_cntrl_int; assign d_xfer_toggle_s = d_xfer_toggle_m3 ^ d_xfer_toggle_m2; always @(posedge d_clk or posedge d_rst) begin if (d_rst == 1'b1) begin d_xfer_toggle_m1 <= 'd0; d_xfer_toggle_m2 <= 'd0; d_xfer_toggle_m3 <= 'd0; d_xfer_toggle <= 'd0; d_data_cntrl_int <= 'd0; end else begin d_xfer_toggle_m1 <= up_xfer_toggle; d_xfer_toggle_m2 <= d_xfer_toggle_m1; d_xfer_toggle_m3 <= d_xfer_toggle_m2; d_xfer_toggle <= d_xfer_toggle_m3; if (d_xfer_toggle_s == 1'b1) begin d_data_cntrl_int <= up_xfer_data; end end end endmodule