// *************************************************************************** // *************************************************************************** // Copyright 2011(c) Analog Devices, Inc. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // - Neither the name of Analog Devices, Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // - The use of this software may or may not infringe the patent rights // of one or more patent holders. This license does not release you // from the requirement that you obtain separate licenses from these // patent holders to use this software. // - Use of the software either in source or binary form, must be run // on or directly connected to an Analog Devices Inc. component. // // THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, // INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. // // IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY // RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // *************************************************************************** // *************************************************************************** // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module axi_fifo2s_dma ( axi_clk, axi_drst, axi_dvalid, axi_ddata, axi_dready, axi_xfer_status, dma_clk, dma_wr, dma_wdata, dma_wready, dma_xfer_req, dma_xfer_status); // parameters parameter AXI_DATA_WIDTH = 512; parameter DMA_DATA_WIDTH = 64; parameter DMA_READY_ENABLE = 1; localparam DMA_MEM_RATIO = AXI_DATA_WIDTH/DMA_DATA_WIDTH; localparam DMA_ADDR_WIDTH = 8; localparam AXI_ADDR_WIDTH = (DMA_MEM_RATIO == 2) ? (DMA_ADDR_WIDTH - 1) : ((DMA_MEM_RATIO == 4) ? (DMA_ADDR_WIDTH - 2) : (DMA_ADDR_WIDTH - 3)); // adc write input axi_clk; input axi_drst; input axi_dvalid; input [AXI_DATA_WIDTH-1:0] axi_ddata; output axi_dready; input [ 3:0] axi_xfer_status; // dma read input dma_clk; output dma_wr; output [DMA_DATA_WIDTH-1:0] dma_wdata; input dma_wready; input dma_xfer_req; output [ 3:0] dma_xfer_status; // internal registers reg [AXI_ADDR_WIDTH-1:0] axi_waddr = 'd0; reg [ 2:0] axi_waddr_rel_count = 'd0; reg axi_waddr_rel_t = 'd0; reg [AXI_ADDR_WIDTH-1:0] axi_waddr_rel = 'd0; reg [ 2:0] axi_raddr_rel_t_m = 'd0; reg [AXI_ADDR_WIDTH-1:0] axi_raddr_rel = 'd0; reg [DMA_ADDR_WIDTH:0] axi_addr_diff = 'd0; reg axi_dready = 'd0; reg dma_rst = 'd0; reg [ 2:0] dma_waddr_rel_t_m = 'd0; reg [AXI_ADDR_WIDTH-1:0] dma_waddr_rel = 'd0; reg dma_rd = 'd0; reg dma_rd_d = 'd0; reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0; reg [DMA_ADDR_WIDTH-1:0] dma_raddr = 'd0; reg [ 2:0] dma_raddr_rel_count = 'd0; reg dma_raddr_rel_t = 'd0; reg [DMA_ADDR_WIDTH-1:0] dma_raddr_rel = 'd0; // internal signals wire [DMA_ADDR_WIDTH:0] axi_addr_diff_s; wire axi_raddr_rel_t_s; wire [DMA_ADDR_WIDTH-1:0] axi_waddr_s; wire dma_waddr_rel_t_s; wire [DMA_ADDR_WIDTH-1:0] dma_waddr_rel_s; wire dma_wready_s; wire dma_rd_s; wire [DMA_DATA_WIDTH-1:0] dma_rdata_s; // write interface always @(posedge axi_clk) begin if (axi_drst == 1'b1) begin axi_waddr <= 'd0; axi_waddr_rel_count <= 'd0; axi_waddr_rel_t <= 'd0; axi_waddr_rel <= 'd0; end else begin if (axi_dvalid == 1'b1) begin axi_waddr <= axi_waddr + 1'b1; end axi_waddr_rel_count <= axi_waddr_rel_count + 1'b1; if (axi_waddr_rel_count == 3'd7) begin axi_waddr_rel_t <= ~axi_waddr_rel_t; axi_waddr_rel <= axi_waddr; end end end assign axi_addr_diff_s = {1'b1, axi_waddr_s} - axi_raddr_rel; assign axi_raddr_rel_t_s = axi_raddr_rel_t_m[2] ^ axi_raddr_rel_t_m[1]; assign axi_waddr_s = (DMA_MEM_RATIO == 2) ? {axi_waddr, 1'd0} : ((DMA_MEM_RATIO == 4) ? {axi_waddr, 2'd0} : {axi_waddr, 3'd0}); always @(posedge axi_clk) begin if (axi_drst == 1'b1) begin axi_raddr_rel_t_m <= 'd0; axi_raddr_rel <= 'd0; axi_addr_diff <= 'd0; axi_dready <= 'd0; end else begin axi_raddr_rel_t_m <= {axi_raddr_rel_t_m[1:0], dma_raddr_rel_t}; if (axi_raddr_rel_t_s == 1'b1) begin axi_raddr_rel <= dma_raddr_rel; end axi_addr_diff <= axi_addr_diff_s; if (axi_addr_diff >= 180) begin axi_dready <= 1'b0; end else if (axi_addr_diff <= 8) begin axi_dready <= 1'b1; end end end // read interface assign dma_waddr_rel_t_s = dma_waddr_rel_t_m[2] ^ dma_waddr_rel_t_m[1]; assign dma_waddr_rel_s = (DMA_MEM_RATIO == 2) ? {dma_waddr_rel, 1'd0} : ((DMA_MEM_RATIO == 4) ? {dma_waddr_rel, 2'd0} : {dma_waddr_rel, 3'd0}); always @(posedge dma_clk) begin if (dma_xfer_req == 1'b0) begin dma_rst <= 1'b1; dma_waddr_rel_t_m <= 'd0; dma_waddr_rel <= 'd0; end else begin dma_rst <= 1'b0; dma_waddr_rel_t_m <= {dma_waddr_rel_t_m[1:0], axi_waddr_rel_t}; if (dma_waddr_rel_t_s == 1'b1) begin dma_waddr_rel <= axi_waddr_rel; end end end assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready; assign dma_rd_s = (dma_raddr == dma_waddr_rel_s) ? 1'b0 : dma_wready_s; always @(posedge dma_clk) begin if (dma_xfer_req == 1'b0) begin dma_rd <= 'd0; dma_rd_d <= 'd0; dma_rdata_d <= 'd0; dma_raddr <= 'd0; dma_raddr_rel_count <= 'd0; dma_raddr_rel_t <= 'd0; dma_raddr_rel <= 'd0; end else begin dma_rd <= dma_rd_s; dma_rd_d <= dma_rd; dma_rdata_d <= dma_rdata_s; if (dma_rd_s == 1'b1) begin dma_raddr <= dma_raddr + 1'b1; end dma_raddr_rel_count <= dma_raddr_rel_count + 1'b1; if (dma_raddr_rel_count == 3'd7) begin dma_raddr_rel_t <= ~dma_raddr_rel_t; dma_raddr_rel <= dma_raddr; end end end // instantiations ad_mem_asym #( .ADDR_WIDTH_A (AXI_ADDR_WIDTH), .DATA_WIDTH_A (AXI_DATA_WIDTH), .ADDR_WIDTH_B (DMA_ADDR_WIDTH), .DATA_WIDTH_B (DMA_DATA_WIDTH)) i_mem_asym ( .clka (axi_clk), .wea (axi_dvalid), .addra (axi_waddr), .dina (axi_ddata), .clkb (dma_clk), .addrb (dma_raddr), .doutb (dma_rdata_s)); ad_axis_inf_rx #(.DATA_WIDTH(DMA_DATA_WIDTH)) i_axis_inf ( .clk (dma_clk), .rst (dma_rst), .valid (dma_rd_d), .last (1'd0), .data (dma_rdata_d), .inf_valid (dma_wr), .inf_last (), .inf_data (dma_wdata), .inf_ready (dma_wready)); up_xfer_status #(.DATA_WIDTH(4)) i_xfer_status ( .up_rstn (~dma_rst), .up_clk (dma_clk), .up_data_status (dma_xfer_status), .d_rst (axi_drst), .d_clk (axi_clk), .d_data_status (axi_xfer_status)); endmodule // *************************************************************************** // ***************************************************************************