// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/main/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** /* * Helper module for synchronizing a counter from one clock domain to another * using gray code. To work correctly the counter must not change its value by * more than one in one clock cycle in the source domain. I.e. the value may * change by either -1, 0 or +1. */ `timescale 1ns/100ps module sync_gray #( // Bit-width of the counter parameter DATA_WIDTH = 1, // Whether the input and output clock are asynchronous, if set to 0 the // synchronizer will be bypassed and out_count will be in_count. parameter ASYNC_CLK = 1 ) ( input in_clk, input in_resetn, input [DATA_WIDTH-1:0] in_count, input out_resetn, input out_clk, output [DATA_WIDTH-1:0] out_count ); generate if (ASYNC_CLK == 1) begin reg [DATA_WIDTH-1:0] cdc_sync_stage0 = 'h0; reg [DATA_WIDTH-1:0] cdc_sync_stage1 = 'h0; reg [DATA_WIDTH-1:0] cdc_sync_stage2 = 'h0; reg [DATA_WIDTH-1:0] out_count_m = 'h0; function [DATA_WIDTH-1:0] g2b; input [DATA_WIDTH-1:0] g; reg [DATA_WIDTH-1:0] b; integer i; begin b[DATA_WIDTH-1] = g[DATA_WIDTH-1]; for (i = DATA_WIDTH - 2; i >= 0; i = i - 1) b[i] = b[i + 1] ^ g[i]; g2b = b; end endfunction function [DATA_WIDTH-1:0] b2g; input [DATA_WIDTH-1:0] b; reg [DATA_WIDTH-1:0] g; integer i; begin g[DATA_WIDTH-1] = b[DATA_WIDTH-1]; for (i = DATA_WIDTH - 2; i >= 0; i = i -1) g[i] = b[i + 1] ^ b[i]; b2g = g; end endfunction always @(posedge in_clk) begin if (in_resetn == 1'b0) begin cdc_sync_stage0 <= 'h00; end else begin cdc_sync_stage0 <= b2g(in_count); end end always @(posedge out_clk) begin if (out_resetn == 1'b0) begin cdc_sync_stage1 <= 'h00; cdc_sync_stage2 <= 'h00; out_count_m <= 'h00; end else begin cdc_sync_stage1 <= cdc_sync_stage0; cdc_sync_stage2 <= cdc_sync_stage1; out_count_m <= g2b(cdc_sync_stage2); end end assign out_count = out_count_m; end else begin assign out_count = in_count; end endgenerate endmodule