// *************************************************************************** // *************************************************************************** // Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved. // // Each core or library found in this collection may have its own licensing terms. // The user should keep this in in mind while exploring these cores. // // Redistribution and use in source and binary forms, // with or without modification of this file, are permitted under the terms of either // (at the option of the user): // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory, or at: // https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html // // OR // // 2. An ADI specific BSD license as noted in the top level directory, or on-line at: // https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module avl_dacfifo_wr #( parameter AVL_DATA_WIDTH = 512, parameter DMA_DATA_WIDTH = 64, parameter AVL_DDR_BASE_ADDRESS = 0, parameter AVL_DDR_ADDRESS_LIMIT = 1048576, parameter DMA_MEM_ADDRESS_WIDTH = 8)( input dma_clk, input [DMA_DATA_WIDTH-1:0] dma_data, input dma_ready, output reg dma_ready_out, input dma_valid, input dma_xfer_req, input dma_xfer_last, output reg [ 3:0] dma_last_beat, input avl_clk, input avl_reset, output reg [24:0] avl_address, output [ 5:0] avl_burstcount, output reg [63:0] avl_byteenable, input avl_ready, output reg avl_write, output reg [AVL_DATA_WIDTH-1:0] avl_data, output reg [24:0] avl_last_address, output reg [63:0] avl_last_byteenable, output reg avl_xfer_req); localparam MEM_RATIO = AVL_DATA_WIDTH/DMA_DATA_WIDTH; // Max supported MEM_RATIO is 16 localparam AVL_MEM_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DMA_MEM_ADDRESS_WIDTH : (MEM_RATIO == 2) ? (DMA_MEM_ADDRESS_WIDTH - 1) : (MEM_RATIO == 4) ? (DMA_MEM_ADDRESS_WIDTH - 2) : (MEM_RATIO == 8) ? (DMA_MEM_ADDRESS_WIDTH - 3) : (DMA_MEM_ADDRESS_WIDTH - 4); localparam MEM_WIDTH_DIFF = (MEM_RATIO > 8) ? 4 : (MEM_RATIO > 4) ? 3 : (MEM_RATIO > 2) ? 2 : (MEM_RATIO > 1) ? 1 : 1; localparam DMA_BUF_THRESHOLD_HI = {(DMA_MEM_ADDRESS_WIDTH){1'b1}} - 4; localparam DMA_BYTE_DATA_WIDTH = DMA_DATA_WIDTH/8; localparam AVL_BYTE_DATA_WIDTH = AVL_DATA_WIDTH/8; wire dma_resetn; wire dma_mem_wea_s; wire [DMA_MEM_ADDRESS_WIDTH :0] dma_mem_address_diff_s; wire [DMA_MEM_ADDRESS_WIDTH-1:0] dma_mem_rd_address_s; wire [AVL_DATA_WIDTH-1:0] avl_mem_rdata_s; wire avl_mem_fetch_wr_address_s; wire avl_mem_readen_s; wire avl_write_transfer_s; wire avl_last_transfer_req_s; wire avl_xfer_req_init_s; wire avl_write_transfer_done_s; reg [DMA_MEM_ADDRESS_WIDTH-1:0] dma_mem_wr_address; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dma_mem_wr_address_d; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dma_mem_rd_address_m1; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dma_mem_rd_address_m2; reg [AVL_MEM_ADDRESS_WIDTH-1:0] dma_mem_rd_address; reg dma_mem_read_control; reg [DMA_MEM_ADDRESS_WIDTH-1:0] dma_mem_address_diff; reg dma_last_beat_ack; reg [MEM_WIDTH_DIFF-1:0] dma_mem_last_beats; reg dma_avl_xfer_req_m1; reg dma_avl_xfer_req; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_rd_address; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_rd_address_g; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_wr_address; reg [AVL_MEM_ADDRESS_WIDTH-1:0] avl_mem_wr_address_next; reg avl_mem_fetch_wr_address; reg avl_mem_fetch_wr_address_m1; reg avl_mem_fetch_wr_address_m2; reg avl_write_d; reg avl_mem_readen; reg avl_write_transfer; reg avl_last_beat_req_m1; reg avl_last_beat_req_m2; reg avl_last_beat_req; reg avl_dma_xfer_req; reg avl_dma_xfer_req_m1; reg avl_dma_xfer_req_m2; reg [MEM_WIDTH_DIFF-1:0] avl_last_beats; reg [MEM_WIDTH_DIFF-1:0] avl_last_beats_m1; reg [MEM_WIDTH_DIFF-1:0] avl_last_beats_m2; reg avl_write_xfer_req; reg avl_write_xfer_req_d; // binary to grey conversion function [7:0] b2g; input [7:0] b; reg [7:0] g; begin g[7] = b[7]; g[6] = b[7] ^ b[6]; g[5] = b[6] ^ b[5]; g[4] = b[5] ^ b[4]; g[3] = b[4] ^ b[3]; g[2] = b[3] ^ b[2]; g[1] = b[2] ^ b[1]; g[0] = b[1] ^ b[0]; b2g = g; end endfunction // grey to binary conversion function [7:0] g2b; input [7:0] g; reg [7:0] b; begin b[7] = g[7]; b[6] = b[7] ^ g[6]; b[5] = b[6] ^ g[5]; b[4] = b[5] ^ g[4]; b[3] = b[4] ^ g[3]; b[2] = b[3] ^ g[2]; b[1] = b[2] ^ g[1]; b[0] = b[1] ^ g[0]; g2b = b; end endfunction // An asymmetric memory to transfer data from DMAC interface to AXI Memory Map // interface ad_mem_asym #( .A_ADDRESS_WIDTH (DMA_MEM_ADDRESS_WIDTH), .A_DATA_WIDTH (DMA_DATA_WIDTH), .B_ADDRESS_WIDTH (AVL_MEM_ADDRESS_WIDTH), .B_DATA_WIDTH (AVL_DATA_WIDTH)) i_mem_asym ( .clka (dma_clk), .wea (dma_mem_wea_s), .addra (dma_mem_wr_address), .dina (dma_data), .clkb (avl_clk), .addrb (avl_mem_rd_address), .doutb (avl_mem_rdata_s)); // the fifo reset is the dma_xfer_req assign dma_resetn = dma_xfer_req; // write address generation assign dma_mem_address_diff_s = {1'b1, dma_mem_wr_address} - dma_mem_rd_address_s; assign dma_mem_rd_address_s = (MEM_RATIO == 1) ? dma_mem_rd_address : (MEM_RATIO == 2) ? {dma_mem_rd_address, 1'b0} : (MEM_RATIO == 4) ? {dma_mem_rd_address, 2'b0} : (MEM_RATIO == 8) ? {dma_mem_rd_address, 3'b0} : {dma_mem_rd_address, 4'b0}; assign dma_mem_wea_s = dma_ready & dma_valid & dma_xfer_req; always @(posedge dma_clk) begin if (dma_resetn == 1'b0) begin dma_mem_wr_address <= 0; dma_mem_read_control <= 1'b0; dma_mem_last_beats <= 0; end else begin if (dma_mem_wea_s == 1'b1) begin dma_mem_wr_address <= dma_mem_wr_address + 1; end if (dma_mem_wr_address[MEM_WIDTH_DIFF-1:0] == {MEM_WIDTH_DIFF{1'b1}}) begin dma_mem_read_control <= ~dma_mem_read_control; dma_mem_wr_address_d <= dma_mem_wr_address[DMA_MEM_ADDRESS_WIDTH-1:MEM_WIDTH_DIFF]; end end if ((dma_xfer_last == 1'b1) && (dma_mem_wea_s)) begin dma_mem_last_beats <= dma_mem_wr_address[MEM_WIDTH_DIFF-1:0]; end end // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin if (dma_resetn == 1'b0) begin dma_mem_address_diff <= 'b0; dma_mem_rd_address_m1 <= 'b0; dma_mem_rd_address_m2 <= 'b0; dma_mem_rd_address <= 'b0; dma_ready_out <= 1'b0; end else begin dma_mem_rd_address_m1 <= avl_mem_rd_address_g; dma_mem_rd_address_m2 <= dma_mem_rd_address_m1; dma_mem_rd_address <= g2b(dma_mem_rd_address_m2); dma_mem_address_diff <= dma_mem_address_diff_s[DMA_MEM_ADDRESS_WIDTH-1:0]; if (dma_mem_address_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; end else begin dma_ready_out <= 1'b1; end end end // last DMA beat always @(posedge dma_clk) begin dma_avl_xfer_req_m1 <= avl_write_xfer_req; dma_avl_xfer_req <= dma_avl_xfer_req_m1; end always @(posedge dma_clk) begin if (dma_avl_xfer_req == 1'b0) begin dma_last_beat_ack <= 1'b0; end else begin if ((dma_xfer_req == 1'b1) && (dma_xfer_last == 1'b1)) begin dma_last_beat_ack <= 1'b1; end end end // transfer the mem_write address to the avalons clock domain assign avl_mem_fetch_wr_address_s = avl_mem_fetch_wr_address ^ avl_mem_fetch_wr_address_m1; always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_mem_fetch_wr_address_m1 <= 0; avl_mem_fetch_wr_address_m2 <= 0; avl_mem_fetch_wr_address <= 0; avl_mem_wr_address <= 0; avl_mem_wr_address_next <= 0; end else begin avl_mem_fetch_wr_address_m1 <= dma_mem_read_control; avl_mem_fetch_wr_address_m2 <= avl_mem_fetch_wr_address_m1; avl_mem_fetch_wr_address <= avl_mem_fetch_wr_address_m2; if (avl_mem_fetch_wr_address_s == 1'b1) begin avl_mem_wr_address <= dma_mem_wr_address_d; avl_mem_wr_address_next <= avl_mem_wr_address + 1; end end end // Avalon write address and fifo read address generation assign avl_mem_readen_s = (avl_mem_rd_address == avl_mem_wr_address_next) ? 0 : avl_write_xfer_req; assign avl_write_transfer_s = avl_write & avl_ready; assign avl_write_transfer_done_s = avl_write_transfer & ~avl_write_transfer_s; always @(posedge avl_clk) begin if ((avl_reset == 1'b1) || (avl_write_xfer_req == 1'b0)) begin avl_address <= AVL_DDR_BASE_ADDRESS; avl_data <= 0; avl_write_transfer <= 1'b0; avl_mem_readen <= 0; avl_mem_rd_address <= 0; avl_mem_rd_address_g <= 0; end else begin if (avl_write_transfer_done_s == 1'b1) begin avl_address <= (avl_address < AVL_DDR_ADDRESS_LIMIT) ? avl_address + 1 : 0; end if (avl_write_transfer_s == 1'b1) begin avl_mem_rd_address <= avl_mem_rd_address + 1; end avl_data <= avl_mem_rdata_s; avl_mem_rd_address_g <= b2g(avl_mem_rd_address); avl_write_transfer <= avl_write_transfer_s; avl_mem_readen <= avl_mem_readen_s; end end // avalon write signaling assign avl_last_transfer_req_s = avl_last_beat_req & ~avl_mem_readen; always @(negedge avl_clk) begin if (avl_reset == 1'b1) begin avl_write <= 1'b0; avl_write_d <= 1'b0; end else begin if ((((avl_mem_readen == 1'b1) && (avl_write_xfer_req == 1'b1)) || ((avl_last_transfer_req_s == 1'b1) && (avl_write_xfer_req == 1'b1))) && (avl_write == 1'b0) && (avl_write_d == 1'b0)) begin avl_write <= 1'b1; end else if (avl_write_transfer == 1'b1) begin avl_write <= 1'b0; end avl_write_d <= avl_write; end end assign avl_xfer_req_init_s = ~avl_dma_xfer_req & avl_dma_xfer_req_m2; always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_last_beat_req_m1 <= 1'b0; avl_last_beat_req_m2 <= 1'b0; avl_last_beat_req <= 1'b0; avl_write_xfer_req <= 1'b0; avl_write_xfer_req_d <= 1'b0; avl_dma_xfer_req_m1 <= 1'b0; avl_dma_xfer_req_m2 <= 1'b0; avl_dma_xfer_req <= 1'b0; end else begin avl_last_beat_req_m1 <= dma_last_beat_ack; avl_last_beat_req_m2 <= avl_last_beat_req_m1; avl_last_beat_req <= avl_last_beat_req_m2; avl_dma_xfer_req_m1 <= dma_xfer_req; avl_dma_xfer_req_m2 <= avl_dma_xfer_req_m1; avl_dma_xfer_req <= avl_dma_xfer_req_m2; if (avl_xfer_req_init_s == 1'b1) begin avl_write_xfer_req <= 1'b1; end else if ((avl_last_transfer_req_s == 1'b1) && (avl_write_transfer == 1'b1)) begin avl_write_xfer_req <= 1'b0; end avl_write_xfer_req_d <= avl_write_xfer_req; end end // generate avl_byteenable signal always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_last_beats_m1 <= 1'b0; avl_last_beats_m2 <= 1'b0; avl_last_beats <= 1'b0; end else begin avl_last_beats_m1 <= dma_mem_last_beats; avl_last_beats_m2 <= avl_last_beats_m1; avl_last_beats <= (avl_last_beat_req == 1'b1) ? avl_last_beats_m2 : avl_last_beats; end end always @(posedge avl_clk) begin if (avl_last_transfer_req_s == 1'b1) begin case (avl_last_beats) 0 : begin case (MEM_RATIO) 2 : avl_byteenable <= {32'b0, {32{1'b1}}}; 4 : avl_byteenable <= {48'b0, {16{1'b1}}}; 8 : avl_byteenable <= {56'b0, {8{1'b1}}}; 16 : avl_byteenable <= {60'b0, {4{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 1 : begin case (MEM_RATIO) 4 : avl_byteenable <= {32'b0, {32{1'b1}}}; 8 : avl_byteenable <= {48'b0, {16{1'b1}}}; 16 : avl_byteenable <= {56'b0, {8{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 2 : begin case (MEM_RATIO) 4 : avl_byteenable <= {16'b0, {48{1'b1}}}; 8 : avl_byteenable <= {40'b0, {24{1'b1}}}; 16 : avl_byteenable <= {52'b0, {12{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 3 : begin case (MEM_RATIO) 8 : avl_byteenable <= {32'b0, {32{1'b1}}}; 16 : avl_byteenable <= {48'b0, {16{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 4 : begin case (MEM_RATIO) 8 : avl_byteenable <= {24'b0, {40{1'b1}}}; 16 : avl_byteenable <= {44'b0, {20{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 5 : begin case (MEM_RATIO) 8 : avl_byteenable <= {16'b0, {48{1'b1}}}; 16 : avl_byteenable <= {40'b0, {24{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 6 : begin case (MEM_RATIO) 8 : avl_byteenable <= {8'b0, {56{1'b1}}}; 16 : avl_byteenable <= {36'b0, {28{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 7 : begin case (MEM_RATIO) 16 : avl_byteenable <= {32'b0, {32{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 8 : begin case (MEM_RATIO) 16 : avl_byteenable <= {28'b0, {36{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 9 : begin case (MEM_RATIO) 16 : avl_byteenable <= {24'b0, {40{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 10 : begin case (MEM_RATIO) 16 : avl_byteenable <= {20'b0, {44{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 11 : begin case (MEM_RATIO) 16 : avl_byteenable <= {16'b0, {48{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 12 : begin case (MEM_RATIO) 16 : avl_byteenable <= {12'b0, {52{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 13 : begin case (MEM_RATIO) 16 : avl_byteenable <= {8'b0, {56{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 14 : begin case (MEM_RATIO) 16 : avl_byteenable <= {4'b0, {60{1'b1}}}; default : avl_byteenable <= {64{1'b1}}; endcase end 15 : begin avl_byteenable <= {64{1'b1}}; end default : avl_byteenable <= {64{1'b1}}; endcase end else begin avl_byteenable <= {64{1'b1}}; end end assign avl_burstcount = 6'b1; // save the last address and byteenable always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_last_address <= 0; avl_last_byteenable <= 0; end else begin if ((avl_write == 1'b1) && (avl_last_transfer_req_s == 1'b1)) begin avl_last_address <= avl_address; avl_last_byteenable <= avl_byteenable; end end end // avl_xfer_req generation for synchronize the access of the external // memory always @(posedge avl_clk) begin if (avl_reset == 1'b1) begin avl_xfer_req <= 1'b0; end else begin if ((avl_last_transfer_req_s == 1'b1) && (avl_write_transfer == 1'b1)) begin avl_xfer_req <= 1'b1; end else if ((avl_xfer_req == 1'b1) && (avl_dma_xfer_req == 1'b1)) begin avl_xfer_req <= 1'b0; end end end endmodule