// *************************************************************************** // *************************************************************************** // Copyright (C) 2021-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/main/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns / 1ps module data_offload #( parameter ID = 0, parameter MEM_TYPE = 0, // 1'b0 -FPGA RAM; 1'b1 - external memory parameter MEM_SIZE_LOG2 = 10, // log2 of memory size in bytes parameter TX_OR_RXN_PATH = 0, // if set IP is used in TX path, other wise in RX path parameter SRC_DATA_WIDTH = 64, parameter DST_DATA_WIDTH = 128, parameter DST_CYCLIC_EN = 1'b0, // 1'b1 - CYCLIC mode enabled; 1'b0 - CYCLIC mode disabled parameter AUTO_BRINGUP = 1, parameter SYNC_EXT_ADD_INTERNAL_CDC = 1, parameter HAS_BYPASS = 1 ) ( // AXI4 Slave for configuration input s_axi_aclk, input s_axi_aresetn, input s_axi_awvalid, input [15:0] s_axi_awaddr, input [ 2:0] s_axi_awprot, output s_axi_awready, input s_axi_wvalid, input [31:0] s_axi_wdata, input [ 3:0] s_axi_wstrb, output s_axi_wready, output s_axi_bvalid, output [ 1:0] s_axi_bresp, input s_axi_bready, input s_axi_arvalid, input [15:0] s_axi_araddr, input [ 2:0] s_axi_arprot, output s_axi_arready, output s_axi_rvalid, input s_axi_rready, output [ 1:0] s_axi_rresp, output [31:0] s_axi_rdata, // AXI4 stream slave for source stream (TX_DMA or ADC) -- Source interface input s_axis_aclk, input s_axis_aresetn, output s_axis_ready, input s_axis_valid, input [SRC_DATA_WIDTH-1:0] s_axis_data, input s_axis_last, input [SRC_DATA_WIDTH/8-1:0] s_axis_tkeep, // AXI4 stream master for destination stream (RX_DMA or DAC) -- Destination // interface input m_axis_aclk, input m_axis_aresetn, input m_axis_ready, output m_axis_valid, output [DST_DATA_WIDTH-1:0] m_axis_data, output m_axis_last, output [DST_DATA_WIDTH/8-1:0] m_axis_tkeep, // initialization request interface input init_req, input sync_ext, // AXIS - Memory UI to storage // AXI stream master for source stream to storage (BRAM/URAM/DDR/HBM) // runs on s_axis_aclk and s_axis_aresetn input m_storage_axis_ready, output m_storage_axis_valid, output [SRC_DATA_WIDTH-1:0] m_storage_axis_data, output m_storage_axis_last, output [SRC_DATA_WIDTH/8-1:0] m_storage_axis_tkeep, // AXI stream slave for destination stream from storage (BRAM/URAM/DDR/HBM) // runs on m_axis_aclk and m_axis_aresetn output s_storage_axis_ready, input s_storage_axis_valid, input [DST_DATA_WIDTH-1:0] s_storage_axis_data, input s_storage_axis_last, input [DST_DATA_WIDTH/8-1:0] s_storage_axis_tkeep, // Control interface for storage for m_storage_axis interface output wr_request_enable, output wr_request_valid, input wr_request_ready, output [MEM_SIZE_LOG2-1:0] wr_request_length, input [MEM_SIZE_LOG2-1:0] wr_response_measured_length, input wr_response_eot, input wr_overflow, // Control interface for storage for s_storage_axis interface output rd_request_enable, output rd_request_valid, input rd_request_ready, output reg [MEM_SIZE_LOG2-1:0] rd_request_length, input rd_response_eot, input rd_underflow, // Status and monitor input ddr_calib_done ); // local parameters -- to make the code more readable localparam SRC_ADDR_WIDTH_BYPASS = (SRC_DATA_WIDTH > DST_DATA_WIDTH) ? 4 : 4 + $clog2(SRC_DATA_WIDTH/DST_DATA_WIDTH); localparam DST_ADDR_WIDTH_BYPASS = (SRC_DATA_WIDTH <= DST_DATA_WIDTH) ? 4 + $clog2(DST_DATA_WIDTH/SRC_DATA_WIDTH) : 4; localparam SRC_BEAT_BYTE = $clog2(SRC_DATA_WIDTH/8); // NOTE: Clock domain prefixes // src_* - AXI4 Stream Slave interface's clock domain // dst_* - AXI4 Stream Master interface's clock domain // internal signals wire up_clk; wire up_rstn; wire up_wreq_s; wire [13:0] up_waddr_s; wire [31:0] up_wdata_s; wire up_rreq_s; wire [13:0] up_raddr_s; wire up_wack_s; wire up_rack_s; wire [31:0] up_rdata_s; wire src_clk; wire src_rstn; wire dst_clk; wire dst_rstn; wire src_bypass_s; wire dst_bypass_s; wire oneshot_s; wire [ 1:0] sync_config_s; wire sync_int_s; wire valid_bypass_s; wire [DST_DATA_WIDTH-1:0] data_bypass_s; wire ready_bypass_s; wire [ 4:0] src_fsm_status_s; wire [ 3:0] dst_fsm_status_s; wire [MEM_SIZE_LOG2-1:0] src_transfer_length_s; wire [MEM_SIZE_LOG2-1:0] rd_wr_response_measured_length; wire rd_ml_valid; wire rd_ready; wire rd_ml_ready; wire wr_ready; assign src_clk = s_axis_aclk; assign dst_clk = m_axis_aclk; // internal registers // Offload FSM and control data_offload_fsm #( .TX_OR_RXN_PATH (TX_OR_RXN_PATH), .SYNC_EXT_ADD_INTERNAL_CDC (SYNC_EXT_ADD_INTERNAL_CDC) ) i_data_offload_fsm ( .up_clk (up_clk), .wr_clk (src_clk), .wr_resetn_in (src_rstn), .wr_request_enable (wr_request_enable), .wr_request_valid (wr_request_valid), .wr_request_ready (wr_request_ready), .wr_response_eot (wr_response_eot), .wr_ready (wr_ready), .rd_clk (dst_clk), .rd_resetn_in (dst_rstn), .rd_request_enable (rd_request_enable), .rd_request_valid (rd_request_valid), .rd_request_ready (rd_request_ready), .rd_response_eot (rd_response_eot), .rd_ready (rd_ready), .rd_valid (s_storage_axis_valid), .rd_ml_valid (rd_ml_valid), .rd_ml_ready (rd_ml_ready), .rd_oneshot (oneshot_s), .wr_bypass (src_bypass_s), .init_req (init_req), .sync_config (sync_config_s), .sync_external (sync_ext), .sync_internal (sync_int_s), .wr_fsm_state_out (src_fsm_status_s), .rd_fsm_state_out (dst_fsm_status_s)); assign m_axis_valid = dst_bypass_s ? valid_bypass_s : (rd_ready & s_storage_axis_valid); // For DAC paths set zero as IDLE data on the axis bus, avoid repeating last // sample. assign m_axis_data = TX_OR_RXN_PATH[0] & ~m_axis_valid ? {DST_DATA_WIDTH{1'b0}} : (dst_bypass_s) ? data_bypass_s : s_storage_axis_data; assign m_axis_last = (dst_bypass_s) ? 1'b0 : s_storage_axis_last; assign m_axis_tkeep = (dst_bypass_s) ? {DST_DATA_WIDTH/8{1'b1}} : s_storage_axis_tkeep; assign s_axis_ready = src_bypass_s ? ready_bypass_s : (wr_ready & m_storage_axis_ready); assign m_storage_axis_valid = s_axis_valid & wr_ready; assign m_storage_axis_data = s_axis_data; assign m_storage_axis_last = s_axis_last; assign m_storage_axis_tkeep = s_axis_tkeep; assign s_storage_axis_ready = rd_ready & m_axis_ready; // Bypass module instance -- the same FIFO, just a smaller depth // NOTE: Generating an overflow is making sense just in BYPASS mode, and // it's supported just with the FIFO interface util_axis_fifo_asym #( .S_DATA_WIDTH (SRC_DATA_WIDTH), .S_ADDRESS_WIDTH (SRC_ADDR_WIDTH_BYPASS), .M_DATA_WIDTH (DST_DATA_WIDTH), .ASYNC_CLK (1) ) i_bypass_fifo ( .m_axis_aclk (m_axis_aclk), .m_axis_aresetn (dst_rstn), .m_axis_ready (m_axis_ready), .m_axis_valid (valid_bypass_s), .m_axis_data (data_bypass_s), .m_axis_tlast (), .m_axis_empty (), .m_axis_almost_empty (), .m_axis_tkeep (), .m_axis_level (), .s_axis_aclk (s_axis_aclk), .s_axis_aresetn (src_rstn), .s_axis_ready (ready_bypass_s), .s_axis_valid (s_axis_valid & src_bypass_s), .s_axis_data (s_axis_data), .s_axis_tlast (), .s_axis_full (), .s_axis_almost_full (), .s_axis_tkeep (), .s_axis_room ()); // register map data_offload_regmap #( .ID (ID), .MEM_TYPE (MEM_TYPE), .MEM_SIZE_LOG2 (MEM_SIZE_LOG2), .TX_OR_RXN_PATH (TX_OR_RXN_PATH), .AUTO_BRINGUP (AUTO_BRINGUP), .HAS_BYPASS (HAS_BYPASS) ) i_regmap ( .up_clk (up_clk), .up_rstn (up_rstn), .up_rreq (up_rreq_s), .up_rack (up_rack_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata_s), .up_wreq (up_wreq_s), .up_wack (up_wack_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .src_clk (s_axis_aclk), .dst_clk (m_axis_aclk), .src_sw_resetn (src_rstn), .dst_sw_resetn (dst_rstn), .ddr_calib_done (ddr_calib_done), .src_bypass (src_bypass_s), .dst_bypass (dst_bypass_s), .oneshot (oneshot_s), .sync (sync_int_s), .sync_config (sync_config_s), .src_transfer_length (wr_request_length), .dst_transfer_length (), .src_fsm_status (src_fsm_status_s), .dst_fsm_status (dst_fsm_status_s), .src_overflow (wr_overflow), .dst_underflow (rd_underflow)); // axi interface wrapper assign up_clk = s_axi_aclk; assign up_rstn = s_axi_aresetn; up_axi #( .AXI_ADDRESS_WIDTH (16) ) i_up_axi ( .up_rstn (up_rstn), .up_clk (up_clk), .up_axi_awvalid (s_axi_awvalid), .up_axi_awaddr (s_axi_awaddr), .up_axi_awready (s_axi_awready), .up_axi_wvalid (s_axi_wvalid), .up_axi_wdata (s_axi_wdata), .up_axi_wstrb (s_axi_wstrb), .up_axi_wready (s_axi_wready), .up_axi_bvalid (s_axi_bvalid), .up_axi_bresp (s_axi_bresp), .up_axi_bready (s_axi_bready), .up_axi_arvalid (s_axi_arvalid), .up_axi_araddr (s_axi_araddr), .up_axi_arready (s_axi_arready), .up_axi_rvalid (s_axi_rvalid), .up_axi_rresp (s_axi_rresp), .up_axi_rdata (s_axi_rdata), .up_axi_rready (s_axi_rready), .up_wreq (up_wreq_s), .up_waddr (up_waddr_s), .up_wdata (up_wdata_s), .up_wack (up_wack_s), .up_rreq (up_rreq_s), .up_raddr (up_raddr_s), .up_rdata (up_rdata_s), .up_rack (up_rack_s)); // Measured length handshake CDC util_axis_fifo #( .DATA_WIDTH(MEM_SIZE_LOG2), .ADDRESS_WIDTH(0), .ASYNC_CLK(1) ) i_measured_length_cdc ( .s_axis_aclk(s_axis_aclk), .s_axis_aresetn(s_axis_aresetn), .s_axis_valid(wr_response_eot), .s_axis_ready(), .s_axis_full(), .s_axis_data(wr_response_measured_length), .s_axis_room(), .s_axis_tkeep(), .s_axis_tlast(), .s_axis_almost_full(), .m_axis_aclk(m_axis_aclk), .m_axis_aresetn(m_axis_aresetn), .m_axis_valid(rd_ml_valid), .m_axis_ready(rd_ml_ready), .m_axis_data(rd_wr_response_measured_length), .m_axis_level(), .m_axis_empty(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_almost_empty()); always @(posedge m_axis_aclk) begin if (rd_ml_valid & rd_ml_ready) rd_request_length <= rd_wr_response_measured_length; end endmodule