// *************************************************************************** // *************************************************************************** // Copyright (C) 2014-2023 Analog Devices, Inc. All rights reserved. // // In this HDL repository, there are many different and unique modules, consisting // of various HDL (Verilog or VHDL) components. The individual modules are // developed independently, and may be accompanied by separate and unique license // terms. // // The user should read each of these license terms, and understand the // freedoms and responsibilities that he or she has by using this source/core. // // This core is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR // A PARTICULAR PURPOSE. // // Redistribution and use of source or resulting binaries, with or without modification // of this file, are permitted under one of the following two license terms: // // 1. The GNU General Public License version 2 as published by the // Free Software Foundation, which can be found in the top level directory // of this repository (LICENSE_GPL2), and also online at: // // // OR // // 2. An ADI specific BSD license, which can be found in the top level directory // of this repository (LICENSE_ADIBSD), and also on-line at: // https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD // This will allow to generate bit files and not release the source code, // as long as it attaches to an ADI device. // // *************************************************************************** // *************************************************************************** `timescale 1ns/100ps module util_dacfifo_bypass #( parameter DAC_DATA_WIDTH = 64, parameter DMA_DATA_WIDTH = 64 ) ( // DMA FIFO interface input dma_clk, input [(DMA_DATA_WIDTH-1):0] dma_data, input dma_ready, output reg dma_ready_out, input dma_valid, // request and synchronization input dma_xfer_req, // dac fifo interface input dac_clk, input dac_rst, input dac_valid, output reg [(DAC_DATA_WIDTH-1):0] dac_data, output reg dac_dunf ); // supported ratios: 1:1 / 1:2 / 1:4 / 1:8 / 2:1 / 4:1 / 8:1 localparam MEM_RATIO = (DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? DMA_DATA_WIDTH/DAC_DATA_WIDTH : DAC_DATA_WIDTH/DMA_DATA_WIDTH; localparam DAC_ADDRESS_WIDTH = 10; localparam DMA_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH : (MEM_RATIO == 2) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 1) : (DAC_ADDRESS_WIDTH + 1)) : (MEM_RATIO == 4) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 2) : (DAC_ADDRESS_WIDTH + 2)) : ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 3) : (DAC_ADDRESS_WIDTH + 3)); localparam DMA_BUF_THRESHOLD_HI = {(DMA_ADDRESS_WIDTH){1'b1}} - 4; localparam DAC_BUF_THRESHOLD_LO = 4; reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr = 'd0; reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_g = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0; reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0; reg dac_mem_rea = 1'b0; reg dac_mem_rea_d = 1'b0; reg dma_rst_m1 = 1'b0; reg dma_rst = 1'b0; reg [DMA_ADDRESS_WIDTH-1:0] dma_mem_addr_diff = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m1 = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2 = 1'b0; reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 1'b0; reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr = 1'b0; reg dac_xfer_out = 1'b0; reg dac_xfer_out_m1 = 1'b0; // internal signals wire [(DAC_ADDRESS_WIDTH):0] dac_mem_addr_diff_s; wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_raddr_s; wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_s; wire dma_mem_wea_s; wire dac_mem_rea_s; wire [(DAC_DATA_WIDTH-1):0] dac_mem_rdata_s; wire [DMA_ADDRESS_WIDTH:0] dma_address_diff_s; wire dac_mem_empty_s; wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_b2g_s; wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s; wire [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2_g2b_s; wire [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s; // An asymmetric memory to transfer data from DMAC interface to DAC interface ad_mem_asym_bypass i_mem_asym ( .mem_i_wrclock_clk (dma_clk), .mem_i_wren_wren (dma_mem_wea_s), .mem_i_wraddress_wraddress (dma_mem_waddr), .mem_i_datain_datain (dma_data), .mem_i_rdclock_clk (dac_clk), .mem_i_rdaddress_rdaddress (dac_mem_raddr), .mem_o_dataout_dataout (dac_mem_rdata_s)); // dma reset is brought from dac domain always @(posedge dma_clk) begin dma_rst_m1 <= dac_rst; dma_rst <= dma_rst_m1; end // Write address generation for the asymmetric memory assign dma_mem_wea_s = dma_xfer_req & dma_valid & dma_ready; always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_mem_waddr <= 'h0; dma_mem_waddr_g <= 'h0; end else begin if (dma_mem_wea_s == 1'b1) begin dma_mem_waddr <= dma_mem_waddr + 1'b1; end dma_mem_waddr_g <= dma_mem_waddr_b2g_s; end end ad_b2g #( .DATA_WIDTH (DMA_ADDRESS_WIDTH) ) i_dma_mem_waddr_b2g ( .din (dma_mem_waddr), .dout (dma_mem_waddr_b2g_s)); // The memory module request data until reaches the high threshold. always @(posedge dma_clk) begin if (dma_rst == 1'b1) begin dma_mem_addr_diff <= 'b0; dma_mem_raddr_m1 <= 'b0; dma_mem_raddr_m2 <= 'b0; dma_mem_raddr <= 'b0; dma_ready_out <= 1'b0; end else begin dma_mem_raddr_m1 <= dac_mem_raddr_g; dma_mem_raddr_m2 <= dma_mem_raddr_m1; dma_mem_raddr <= dma_mem_raddr_m2_g2b_s; dma_mem_addr_diff <= dma_address_diff_s[DMA_ADDRESS_WIDTH-1:0]; if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin dma_ready_out <= 1'b0; end else begin dma_ready_out <= 1'b1; end end end ad_g2b #( .DATA_WIDTH (DAC_ADDRESS_WIDTH) ) i_dma_mem_raddr_g2b ( .din (dma_mem_raddr_m2), .dout (dma_mem_raddr_m2_g2b_s)); // relative address offset on dma domain assign dma_address_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s; assign dma_mem_raddr_s = (DMA_DATA_WIDTH>DAC_DATA_WIDTH) ? ((MEM_RATIO == 1) ? (dma_mem_raddr) : (MEM_RATIO == 2) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):1]) : (MEM_RATIO == 4) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):2]) : (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):3])) : ((MEM_RATIO == 1) ? (dma_mem_raddr) : (MEM_RATIO == 2) ? ({dma_mem_raddr, 1'b0}) : (MEM_RATIO == 4) ? ({dma_mem_raddr, 2'b0}) : ({dma_mem_raddr, 3'b0})); // relative address offset on dac domain assign dac_address_diff_s = {1'b1, dac_mem_waddr_s} - dac_mem_raddr; assign dac_mem_waddr_s = (DAC_DATA_WIDTH>DMA_DATA_WIDTH) ? ((MEM_RATIO == 1) ? (dac_mem_waddr) : (MEM_RATIO == 2) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):1]) : (MEM_RATIO == 4) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):2]) : (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):3])) : ((MEM_RATIO == 1) ? (dac_mem_waddr) : (MEM_RATIO == 2) ? ({dac_mem_waddr, 1'b0}) : (MEM_RATIO == 4) ? ({dac_mem_waddr, 2'b0}) : ({dac_mem_waddr, 3'b0})); // Read address generation for the asymmetric memory assign dac_mem_empty_s = (dac_mem_waddr_s == dac_mem_raddr) ? 1'b1 : 1'b0; assign dac_mem_rea_s = dac_valid & !dac_mem_empty_s; always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_mem_raddr <= 'h0; dac_mem_raddr_g <= 'h0; end else begin if (dac_mem_rea_s == 1'b1) begin dac_mem_raddr <= dac_mem_raddr + 1'b1; end dac_mem_raddr_g <= dac_mem_raddr_b2g_s; end end // compensate the read latency of the memory always @(posedge dac_clk) begin dac_mem_rea_d <= dac_mem_rea_s; dac_mem_rea <= dac_mem_rea_d; end ad_b2g #( .DATA_WIDTH (DAC_ADDRESS_WIDTH) ) i_dac_mem_raddr_b2g ( .din (dac_mem_raddr), .dout (dac_mem_raddr_b2g_s)); // transfer the write address into the DAC's clock domain always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_mem_waddr_m1 <= 'b0; dac_mem_waddr_m2 <= 'b0; dac_mem_waddr <= 'b0; end else begin dac_mem_waddr_m1 <= dma_mem_waddr_g; dac_mem_waddr_m2 <= dac_mem_waddr_m1; dac_mem_waddr <= dac_mem_waddr_m2_g2b_s; end end ad_g2b #( .DATA_WIDTH (DMA_ADDRESS_WIDTH) ) i_dac_mem_waddr_g2b ( .din (dac_mem_waddr_m2), .dout (dac_mem_waddr_m2_g2b_s)); // define underflow always @(posedge dac_clk) begin if (dac_rst == 1'b1) begin dac_xfer_out_m1 <= 1'b0; dac_xfer_out <= 1'b0; dac_dunf <= 1'b0; end else begin dac_xfer_out_m1 <= dma_xfer_req; dac_xfer_out <= dac_xfer_out_m1; if (dac_valid == 1'b1) begin dac_dunf <= dac_mem_empty_s; end end end // DAC data output logic - make sure that the data output is zero between // transfers always @(posedge dac_clk) begin if (dac_dunf == 1'b1) begin dac_data <= 0; end else begin dac_data <= dac_mem_rdata_s; end end endmodule