pluto_hdl_adi/library/util_bsplit/util_bsplit.v

79 lines
3.6 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsabilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
// too bad- we have to do this!
`timescale 1ns/100ps
module util_bsplit #(
parameter CHANNEL_DATA_WIDTH = 1,
parameter NUM_OF_CHANNELS = 8) (
input [((NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)-1):0] data,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_0,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_1,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_2,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_3,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_4,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_5,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_6,
output [(CHANNEL_DATA_WIDTH-1):0] split_data_7);
localparam NUM_OF_CHANNELS_M = 9;
// internal signals
wire [((NUM_OF_CHANNELS_M*CHANNEL_DATA_WIDTH)-1):0] data_s;
// extend and split
assign data_s[((NUM_OF_CHANNELS_M*CHANNEL_DATA_WIDTH)-1):(NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)] = 'd0;
assign data_s[((NUM_OF_CHANNELS*CHANNEL_DATA_WIDTH)-1):0] = data;
assign split_data_0 = data_s[((CHANNEL_DATA_WIDTH*1)-1):(CHANNEL_DATA_WIDTH*0)];
assign split_data_1 = data_s[((CHANNEL_DATA_WIDTH*2)-1):(CHANNEL_DATA_WIDTH*1)];
assign split_data_2 = data_s[((CHANNEL_DATA_WIDTH*3)-1):(CHANNEL_DATA_WIDTH*2)];
assign split_data_3 = data_s[((CHANNEL_DATA_WIDTH*4)-1):(CHANNEL_DATA_WIDTH*3)];
assign split_data_4 = data_s[((CHANNEL_DATA_WIDTH*5)-1):(CHANNEL_DATA_WIDTH*4)];
assign split_data_5 = data_s[((CHANNEL_DATA_WIDTH*6)-1):(CHANNEL_DATA_WIDTH*5)];
assign split_data_6 = data_s[((CHANNEL_DATA_WIDTH*7)-1):(CHANNEL_DATA_WIDTH*6)];
assign split_data_7 = data_s[((CHANNEL_DATA_WIDTH*8)-1):(CHANNEL_DATA_WIDTH*7)];
endmodule
// ***************************************************************************
// ***************************************************************************