pluto_hdl_adi/library/axi_ad9467/axi_ad9467_if.v

404 lines
12 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2011(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// This is the LVDS/DDR interface
`timescale 1ns/100ps
module axi_ad9467_if (
// adc interface (clk, data, over-range)
adc_clk_in_p,
adc_clk_in_n,
adc_data_in_p,
adc_data_in_n,
adc_data_or_p,
adc_data_or_n,
// interface outputs
adc_clk,
adc_data,
adc_or,
adc_ddr_edgesel,
// delay control signals
delay_sel,
delay_rwn,
delay_addr,
delay_wdata,
delay_clk,
delay_ack,
delay_rst,
delay_rdata,
delay_locked);
// This parameter controls the buffer type based on the target device.
parameter PCORE_BUFTYPE = 0;
parameter C_DEVICE_7SERIES = 0;
parameter C_DEVICE_VIRTEX6 = 1;
parameter PCORE_IODELAY_GROUP = "dev_if_delay_group";
// adc interface (clk, data, over-range)
input adc_clk_in_p;
input adc_clk_in_n;
input [ 7:0] adc_data_in_p;
input [ 7:0] adc_data_in_n;
input adc_data_or_p;
input adc_data_or_n;
// interface outputs
output adc_clk;
output [15:0] adc_data;
output adc_or;
input adc_ddr_edgesel;
// delay control signals
input delay_sel;
input delay_rwn;
input [ 7:0] delay_addr;
input [ 4:0] delay_wdata;
input delay_clk;
input delay_rst;
output delay_ack;
output [ 4:0] delay_rdata;
output delay_locked;
reg [ 7:0] adc_data_p = 'd0;
reg [ 7:0] adc_data_n = 'd0;
reg [ 7:0] adc_data_n_d = 'd0;
reg [ 7:0] adc_dmux_a = 'd0;
reg [ 7:0] adc_dmux_b = 'd0;
reg [15:0] adc_data = 'd0;
reg adc_or_p = 'd0;
reg adc_or_n = 'd0;
reg adc_or = 'd0;
reg [ 8:0] delay_ld = 'd0;
reg delay_ack = 'd0;
reg [ 4:0] delay_rdata = 'd0;
wire [ 4:0] delay_rdata_s[8:0];
wire [ 7:0] adc_data_ibuf_s;
wire [ 7:0] adc_data_idelay_s;
wire [ 7:0] adc_data_p_s;
wire [ 7:0] adc_data_n_s;
wire adc_or_ibuf_s;
wire adc_or_idelay_s;
wire adc_or_p_s;
wire adc_or_n_s;
wire adc_clk_ibuf_s;
genvar l_inst;
// The adc data is 8bits ddr, and here it is demuxed to 16bits.
// The samples may be selected to be either positive first,
// or negative first.
always @(posedge adc_clk) begin
adc_data_p <= adc_data_p_s;
adc_data_n <= adc_data_n_s;
adc_data_n_d <= adc_data_n;
adc_dmux_a <= (adc_ddr_edgesel == 1'b1) ? adc_data_n : adc_data_p;
adc_dmux_b <= (adc_ddr_edgesel == 1'b1) ? adc_data_p : adc_data_n_d;
adc_data[15] <= adc_dmux_b[7];
adc_data[14] <= adc_dmux_a[7];
adc_data[13] <= adc_dmux_b[6];
adc_data[12] <= adc_dmux_a[6];
adc_data[11] <= adc_dmux_b[5];
adc_data[10] <= adc_dmux_a[5];
adc_data[ 9] <= adc_dmux_b[4];
adc_data[ 8] <= adc_dmux_a[4];
adc_data[ 7] <= adc_dmux_b[3];
adc_data[ 6] <= adc_dmux_a[3];
adc_data[ 5] <= adc_dmux_b[2];
adc_data[ 4] <= adc_dmux_a[2];
adc_data[ 3] <= adc_dmux_b[1];
adc_data[ 2] <= adc_dmux_a[1];
adc_data[ 1] <= adc_dmux_b[0];
adc_data[ 0] <= adc_dmux_a[0];
adc_or_p <= adc_or_p_s;
adc_or_n <= adc_or_n_s;
if ((adc_or_p == 1'b1) || (adc_or_n == 1'b1)) begin
adc_or <= 1'b1;
end else begin
adc_or <= 1'b0;
end
end
// The delay write interface, each delay element can be individually
// addressed, and a delay value can be directly loaded (no INC/DEC stuff)
always @(posedge delay_clk) begin
if ((delay_sel == 1'b1) && (delay_rwn == 1'b0)) begin
case (delay_addr)
8'd8 : delay_ld <= 9'h100;
8'd7 : delay_ld <= 9'h080;
8'd6 : delay_ld <= 9'h040;
8'd5 : delay_ld <= 9'h020;
8'd4 : delay_ld <= 9'h010;
8'd3 : delay_ld <= 9'h008;
8'd2 : delay_ld <= 9'h004;
8'd1 : delay_ld <= 9'h002;
8'd0 : delay_ld <= 9'h001;
default: delay_ld <= 9'h000;
endcase
end else begin
delay_ld <= 9'h000;
end
end
// delay read interface, a delay ack toggle is used to transfer data to the
// processor side- delay locked is independently transferred
always @(posedge delay_clk) begin
case (delay_addr)
8'd8 : delay_rdata <= delay_rdata_s[8];
8'd7 : delay_rdata <= delay_rdata_s[7];
8'd6 : delay_rdata <= delay_rdata_s[6];
8'd5 : delay_rdata <= delay_rdata_s[5];
8'd4 : delay_rdata <= delay_rdata_s[4];
8'd3 : delay_rdata <= delay_rdata_s[3];
8'd2 : delay_rdata <= delay_rdata_s[2];
8'd1 : delay_rdata <= delay_rdata_s[1];
8'd0 : delay_rdata <= delay_rdata_s[0];
default: delay_rdata <= 5'd0;
endcase
if (delay_sel == 1'b1) begin
delay_ack <= ~delay_ack;
end
end
// The data interface, data signals goes through a LVDS input buffer, then
// a delay element (1/32th of a 200MHz clock) and finally an input DDR demux.
generate
for (l_inst = 0; l_inst <= 7; l_inst = l_inst + 1) begin : g_adc_if
IBUFDS i_data_ibuf (
.I (adc_data_in_p[l_inst]),
.IB (adc_data_in_n[l_inst]),
.O (adc_data_ibuf_s[l_inst]));
if (PCORE_BUFTYPE == C_DEVICE_VIRTEX6) begin
(* IODELAY_GROUP = PCORE_IODELAY_GROUP *)
IODELAYE1 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("I"),
.HIGH_PERFORMANCE_MODE ("TRUE"),
.IDELAY_TYPE ("VAR_LOADABLE"),
.IDELAY_VALUE (0),
.ODELAY_TYPE ("FIXED"),
.ODELAY_VALUE (0),
.REFCLK_FREQUENCY (200.0),
.SIGNAL_PATTERN ("DATA"))
i_data_idelay (
.T (1'b1),
.CE (1'b0),
.INC (1'b0),
.CLKIN (1'b0),
.DATAIN (1'b0),
.ODATAIN (1'b0),
.CINVCTRL (1'b0),
.C (delay_clk),
.IDATAIN (adc_data_ibuf_s[l_inst]),
.DATAOUT (adc_data_idelay_s[l_inst]),
.RST (delay_ld[l_inst]),
.CNTVALUEIN (delay_wdata),
.CNTVALUEOUT (delay_rdata_s[l_inst]));
end else begin
(* IODELAY_GROUP = PCORE_IODELAY_GROUP *)
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("IDATAIN"),
.HIGH_PERFORMANCE_MODE ("FALSE"),
.IDELAY_TYPE ("VAR_LOAD"),
.IDELAY_VALUE (0),
.REFCLK_FREQUENCY (200.0),
.PIPE_SEL ("FALSE"),
.SIGNAL_PATTERN ("DATA"))
i_data_idelay (
.CE (1'b0),
.INC (1'b0),
.DATAIN (1'b0),
.LDPIPEEN (1'b0),
.CINVCTRL (1'b0),
.REGRST (1'b0),
.C (delay_clk),
.IDATAIN (adc_data_ibuf_s[l_inst]),
.DATAOUT (adc_data_idelay_s[l_inst]),
.LD (delay_ld[l_inst]),
.CNTVALUEIN (delay_wdata),
.CNTVALUEOUT (delay_rdata_s[l_inst]));
end
IDDR #(
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.DDR_CLK_EDGE ("SAME_EDGE_PIPELINED"),
.SRTYPE ("ASYNC"))
i_data_ddr (
.CE (1'b1),
.R (1'b0),
.S (1'b0),
.C (adc_clk),
.D (adc_data_idelay_s[l_inst]),
.Q1 (adc_data_p_s[l_inst]),
.Q2 (adc_data_n_s[l_inst]));
end
endgenerate
// The over-range interface, it follows a similar path as the data signals.
IBUFDS i_or_ibuf (
.I (adc_data_or_p),
.IB (adc_data_or_n),
.O (adc_or_ibuf_s));
generate
if (PCORE_BUFTYPE == C_DEVICE_VIRTEX6) begin
(* IODELAY_GROUP = PCORE_IODELAY_GROUP *)
IODELAYE1 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("I"),
.HIGH_PERFORMANCE_MODE ("TRUE"),
.IDELAY_TYPE ("VAR_LOADABLE"),
.IDELAY_VALUE (0),
.ODELAY_TYPE ("FIXED"),
.ODELAY_VALUE (0),
.REFCLK_FREQUENCY (200.0),
.SIGNAL_PATTERN ("DATA"))
i_or_idelay (
.T (1'b1),
.CE (1'b0),
.INC (1'b0),
.CLKIN (1'b0),
.DATAIN (1'b0),
.ODATAIN (1'b0),
.CINVCTRL (1'b0),
.C (delay_clk),
.IDATAIN (adc_or_ibuf_s),
.DATAOUT (adc_or_idelay_s),
.RST (delay_ld[8]),
.CNTVALUEIN (delay_wdata),
.CNTVALUEOUT (delay_rdata_s[8]));
end else begin
(* IODELAY_GROUP = PCORE_IODELAY_GROUP *)
IDELAYE2 #(
.CINVCTRL_SEL ("FALSE"),
.DELAY_SRC ("IDATAIN"),
.HIGH_PERFORMANCE_MODE ("FALSE"),
.IDELAY_TYPE ("VAR_LOAD"),
.IDELAY_VALUE (0),
.REFCLK_FREQUENCY (200.0),
.PIPE_SEL ("FALSE"),
.SIGNAL_PATTERN ("DATA"))
i_or_idelay (
.CE (1'b0),
.INC (1'b0),
.DATAIN (1'b0),
.LDPIPEEN (1'b0),
.CINVCTRL (1'b0),
.REGRST (1'b0),
.C (delay_clk),
.IDATAIN (adc_or_ibuf_s),
.DATAOUT (adc_or_idelay_s),
.LD (delay_ld[8]),
.CNTVALUEIN (delay_wdata),
.CNTVALUEOUT (delay_rdata_s[8]));
end
endgenerate
IDDR #(
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.DDR_CLK_EDGE ("SAME_EDGE_PIPELINED"),
.SRTYPE ("ASYNC"))
i_or_ddr (
.CE (1'b1),
.R (1'b0),
.S (1'b0),
.C (adc_clk),
.D (adc_or_idelay_s),
.Q1 (adc_or_p_s),
.Q2 (adc_or_n_s));
// The clock path is a simple clock buffer after a LVDS input buffer.
// It is possible for this logic to be replaced with a OSERDES based data capture.
// The reason for such a simple interface here is because this reference design
// is used for various boards (native fmc and/or evaluation boards). The pinouts
// of the FPGA - ADC interface is probably do not allow a OSERDES placement.
IBUFGDS i_clk_ibuf (
.I (adc_clk_in_p),
.IB (adc_clk_in_n),
.O (adc_clk_ibuf_s));
generate
if (PCORE_BUFTYPE == C_DEVICE_VIRTEX6) begin
BUFR #(.BUFR_DIVIDE ("BYPASS")) i_clk_gbuf (
.CLR (1'b0),
.CE (1'b1),
.I (adc_clk_ibuf_s),
.O (adc_clk));
end else begin
BUFG i_clk_gbuf (
.I (adc_clk_ibuf_s),
.O (adc_clk));
end
endgenerate
// The delay controller. Refer to Xilinx doc. for details.
// The GROUP directive controls which delay elements this is associated with.
(* IODELAY_GROUP = PCORE_IODELAY_GROUP *)
IDELAYCTRL i_delay_ctrl (
.RST (delay_rst),
.REFCLK (delay_clk),
.RDY (delay_locked));
endmodule
// ***************************************************************************
// ***************************************************************************