150 lines
5.1 KiB
Verilog
150 lines
5.1 KiB
Verilog
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
|
|
//
|
|
// In this HDL repository, there are many different and unique modules, consisting
|
|
// of various HDL (Verilog or VHDL) components. The individual modules are
|
|
// developed independently, and may be accompanied by separate and unique license
|
|
// terms.
|
|
//
|
|
// The user should read each of these license terms, and understand the
|
|
// freedoms and responsibilities that he or she has by using this source/core.
|
|
//
|
|
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
|
// A PARTICULAR PURPOSE.
|
|
//
|
|
// Redistribution and use of source or resulting binaries, with or without modification
|
|
// of this file, are permitted under one of the following two license terms:
|
|
//
|
|
// 1. The GNU General Public License version 2 as published by the
|
|
// Free Software Foundation, which can be found in the top level directory
|
|
// of this repository (LICENSE_GPL2), and also online at:
|
|
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
|
|
//
|
|
// OR
|
|
//
|
|
// 2. An ADI specific BSD license, which can be found in the top level directory
|
|
// of this repository (LICENSE_ADIBSD), and also on-line at:
|
|
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
|
|
// This will allow to generate bit files and not release the source code,
|
|
// as long as it attaches to an ADI device.
|
|
//
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
|
|
// A simple asymetric memory. The write and read memory space must have the same size.
|
|
// 2^A_ADDRESS_WIDTH * A_DATA_WIDTH == 2^B_ADDRESS_WIDTH * B_DATA_WIDTH
|
|
|
|
`timescale 1ns/100ps
|
|
|
|
module ad_mem_asym #(
|
|
|
|
parameter A_ADDRESS_WIDTH = 8,
|
|
parameter A_DATA_WIDTH = 256,
|
|
parameter B_ADDRESS_WIDTH = 10,
|
|
parameter B_DATA_WIDTH = 64) (
|
|
|
|
input clka,
|
|
input wea,
|
|
input [A_ADDRESS_WIDTH-1:0] addra,
|
|
input [A_DATA_WIDTH-1:0] dina,
|
|
|
|
input clkb,
|
|
input reb,
|
|
input [B_ADDRESS_WIDTH-1:0] addrb,
|
|
output reg [B_DATA_WIDTH-1:0] doutb);
|
|
|
|
|
|
`define max(a,b) {(a) > (b) ? (a) : (b)}
|
|
`define min(a,b) {(a) < (b) ? (a) : (b)}
|
|
|
|
function integer clog2;
|
|
input integer value;
|
|
begin
|
|
if (value < 2)
|
|
clog2 = value;
|
|
else begin
|
|
value = value - 1;
|
|
for (clog2 = 0; value > 0; clog2 = clog2 + 1)
|
|
value = value >> 1;
|
|
end
|
|
end
|
|
endfunction
|
|
|
|
localparam MEM_ADDRESS_WIDTH = `max(A_ADDRESS_WIDTH, B_ADDRESS_WIDTH);
|
|
localparam MIN_WIDTH = `min(A_DATA_WIDTH, B_DATA_WIDTH);
|
|
localparam MAX_WIDTH = `max(A_DATA_WIDTH, B_DATA_WIDTH);
|
|
localparam MEM_DATA_WIDTH = MIN_WIDTH;
|
|
localparam MEM_SIZE = 2 ** MEM_ADDRESS_WIDTH;
|
|
localparam MEM_RATIO = MAX_WIDTH / MIN_WIDTH;
|
|
localparam MEM_RATIO_LOG2 = clog2(MEM_RATIO);
|
|
|
|
// internal registers
|
|
|
|
(* ram_style = "block" *)
|
|
reg [MEM_DATA_WIDTH-1:0] m_ram[0:MEM_SIZE-1];
|
|
|
|
//---------------------------------------------------------------------------
|
|
// write interface
|
|
//---------------------------------------------------------------------------
|
|
|
|
// write data width is narrower than read data width
|
|
generate if (A_DATA_WIDTH <= B_DATA_WIDTH) begin
|
|
always @(posedge clka) begin
|
|
if (wea == 1'b1) begin
|
|
m_ram[addra] <= dina;
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
// write data width is wider than read data width
|
|
generate if (A_DATA_WIDTH > B_DATA_WIDTH) begin
|
|
always @(posedge clka) begin : memwrite
|
|
integer i;
|
|
reg [MEM_RATIO_LOG2-1:0] lsb;
|
|
for (i = 0; i < MEM_RATIO; i = i + 1) begin : awrite
|
|
lsb = i;
|
|
if (wea) begin
|
|
m_ram[{addra, lsb}] <= dina[i * MIN_WIDTH +: MIN_WIDTH];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
//---------------------------------------------------------------------------
|
|
// read interface
|
|
//---------------------------------------------------------------------------
|
|
|
|
// read data width is narrower than write data width
|
|
generate if (A_DATA_WIDTH >= B_DATA_WIDTH) begin
|
|
always @(posedge clkb) begin
|
|
if (reb == 1'b1) begin
|
|
doutb <= m_ram[addrb];
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
// read data width is wider than write data width
|
|
generate if (A_DATA_WIDTH < B_DATA_WIDTH) begin
|
|
always @(posedge clkb) begin : memread
|
|
integer i;
|
|
reg [MEM_RATIO_LOG2-1:0] lsb;
|
|
for (i = 0; i < MEM_RATIO; i = i + 1) begin : aread
|
|
lsb = i;
|
|
if (reb == 1'b1) begin
|
|
doutb[i*MIN_WIDTH +: MIN_WIDTH] <= m_ram[{addrb, lsb}];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|