pluto_hdl_adi/library/altera/avl_dacfifo/util_dacfifo_bypass.v

276 lines
10 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_dacfifo_bypass #(
parameter DAC_DATA_WIDTH = 64,
parameter DMA_DATA_WIDTH = 64) (
// dma fifo interface
input dma_clk,
input [(DMA_DATA_WIDTH-1):0] dma_data,
input dma_ready,
output reg dma_ready_out,
input dma_valid,
// request and syncronizaiton
input dma_xfer_req,
// dac fifo interface
input dac_clk,
input dac_rst,
input dac_valid,
output reg [(DAC_DATA_WIDTH-1):0] dac_data,
output reg dac_dunf
);
// suported ratios: 1:1 / 1:2 / 1:4 / 1:8 / 2:1 / 4:1 / 8:1
localparam MEM_RATIO = (DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? DMA_DATA_WIDTH/DAC_DATA_WIDTH :
DAC_DATA_WIDTH/DMA_DATA_WIDTH;
localparam DAC_ADDRESS_WIDTH = 10;
localparam DMA_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH :
(MEM_RATIO == 2) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 1) : (DAC_ADDRESS_WIDTH + 1)) :
(MEM_RATIO == 4) ? ((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 2) : (DAC_ADDRESS_WIDTH + 2)) :
((DMA_DATA_WIDTH > DAC_DATA_WIDTH) ? (DAC_ADDRESS_WIDTH - 3) : (DAC_ADDRESS_WIDTH + 3));
localparam DMA_BUF_THRESHOLD_HI = {(DMA_ADDRESS_WIDTH){1'b1}} - 4;
localparam DAC_BUF_THRESHOLD_LO = 4;
reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr = 'd0;
reg [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0;
reg dac_mem_rea = 1'b0;
reg dac_mem_rea_d = 1'b0;
reg dma_rst_m1 = 1'b0;
reg dma_rst = 1'b0;
reg [DMA_ADDRESS_WIDTH-1:0] dma_mem_addr_diff = 1'b0;
reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m1 = 1'b0;
reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2 = 1'b0;
reg [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr = 1'b0;
reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 1'b0;
reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 1'b0;
reg [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr = 1'b0;
reg dac_xfer_out = 1'b0;
reg dac_xfer_out_m1 = 1'b0;
// internal signals
wire [(DAC_ADDRESS_WIDTH):0] dac_mem_addr_diff_s;
wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_raddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_s;
wire dma_mem_wea_s;
wire dac_mem_rea_s;
wire [(DAC_DATA_WIDTH-1):0] dac_mem_rdata_s;
wire [DMA_ADDRESS_WIDTH:0] dma_address_diff_s;
wire dac_mem_empty_s;
wire [(DMA_ADDRESS_WIDTH-1):0] dma_mem_waddr_b2g_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_b2g_s;
wire [(DAC_ADDRESS_WIDTH-1):0] dma_mem_raddr_m2_g2b_s;
wire [(DMA_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2_g2b_s;
// An asymmetric memory to transfer data from DMAC interface to DAC interface
alt_mem_asym_bypass i_mem_asym (
.mem_i_wrclock (dma_clk),
.mem_i_wren (dma_mem_wea_s),
.mem_i_wraddress (dma_mem_waddr),
.mem_i_datain (dma_data),
.mem_i_rdclock (dac_clk),
.mem_i_rdaddress (dac_mem_raddr),
.mem_o_dataout (dac_mem_rdata_s));
// dma reset is brought from dac domain
always @(posedge dma_clk) begin
dma_rst_m1 <= dac_rst;
dma_rst <= dma_rst_m1;
end
// Write address generation for the asymmetric memory
assign dma_mem_wea_s = dma_xfer_req & dma_valid & dma_ready;
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_mem_waddr <= 'h0;
dma_mem_waddr_g <= 'h0;
end else begin
if (dma_mem_wea_s == 1'b1) begin
dma_mem_waddr <= dma_mem_waddr + 1'b1;
end
dma_mem_waddr_g <= dma_mem_waddr_b2g_s;
end
end
ad_b2g #(
.DATA_WIDTH (DMA_ADDRESS_WIDTH))
i_dma_mem_waddr_b2g (
.din (dma_mem_waddr),
.dout (dma_mem_waddr_b2g_s));
// The memory module request data until reaches the high threshold.
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_mem_addr_diff <= 'b0;
dma_mem_raddr_m1 <= 'b0;
dma_mem_raddr_m2 <= 'b0;
dma_mem_raddr <= 'b0;
dma_ready_out <= 1'b0;
end else begin
dma_mem_raddr_m1 <= dac_mem_raddr_g;
dma_mem_raddr_m2 <= dma_mem_raddr_m1;
dma_mem_raddr <= dma_mem_raddr_m2_g2b_s;
dma_mem_addr_diff <= dma_address_diff_s[DMA_ADDRESS_WIDTH-1:0];
if (dma_mem_addr_diff >= DMA_BUF_THRESHOLD_HI) begin
dma_ready_out <= 1'b0;
end else begin
dma_ready_out <= 1'b1;
end
end
end
ad_g2b #(
.DATA_WIDTH (DAC_ADDRESS_WIDTH))
i_dma_mem_raddr_g2b (
.din (dma_mem_raddr_m2),
.dout (dma_mem_raddr_m2_g2b_s));
// relative address offset on dma domain
assign dma_address_diff_s = {1'b1, dma_mem_waddr} - dma_mem_raddr_s;
assign dma_mem_raddr_s = (DMA_DATA_WIDTH>DAC_DATA_WIDTH) ?
((MEM_RATIO == 1) ? (dma_mem_raddr) :
(MEM_RATIO == 2) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):1]) :
(MEM_RATIO == 4) ? (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):2]) : (dma_mem_raddr[(DAC_ADDRESS_WIDTH-1):3])) :
((MEM_RATIO == 1) ? (dma_mem_raddr) :
(MEM_RATIO == 2) ? ({dma_mem_raddr, 1'b0}) :
(MEM_RATIO == 4) ? ({dma_mem_raddr, 2'b0}) : ({dma_mem_raddr, 3'b0}));
// relative address offset on dac domain
assign dac_address_diff_s = {1'b1, dac_mem_waddr_s} - dac_mem_raddr;
assign dac_mem_waddr_s = (DAC_DATA_WIDTH>DMA_DATA_WIDTH) ?
((MEM_RATIO == 1) ? (dac_mem_waddr) :
(MEM_RATIO == 2) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):1]) :
(MEM_RATIO == 4) ? (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):2]) : (dac_mem_waddr[(DMA_ADDRESS_WIDTH-1):3])) :
((MEM_RATIO == 1) ? (dac_mem_waddr) :
(MEM_RATIO == 2) ? ({dac_mem_waddr, 1'b0}) :
(MEM_RATIO == 4) ? ({dac_mem_waddr, 2'b0}) : ({dac_mem_waddr, 3'b0}));
// Read address generation for the asymmetric memory
assign dac_mem_empty_s = (dac_mem_waddr_s == dac_mem_raddr) ? 1'b1 : 1'b0;
assign dac_mem_rea_s = dac_valid & !dac_mem_empty_s;
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_mem_raddr <= 'h0;
dac_mem_raddr_g <= 'h0;
end else begin
if (dac_mem_rea_s == 1'b1) begin
dac_mem_raddr <= dac_mem_raddr + 1'b1;
end
dac_mem_raddr_g <= dac_mem_raddr_b2g_s;
end
end
// compensate the read latency of the memory
always @(posedge dac_clk) begin
dac_mem_rea_d <= dac_mem_rea_s;
dac_mem_rea <= dac_mem_rea_d;
end
ad_b2g #(
.DATA_WIDTH (DAC_ADDRESS_WIDTH))
i_dac_mem_raddr_b2g (
.din (dac_mem_raddr),
.dout (dac_mem_raddr_b2g_s));
// The memory module is ready if it's not empty
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_mem_waddr_m1 <= 'b0;
dac_mem_waddr_m2 <= 'b0;
dac_mem_waddr <= 'b0;
end else begin
dac_mem_waddr_m1 <= dma_mem_waddr_g;
dac_mem_waddr_m2 <= dac_mem_waddr_m1;
dac_mem_waddr <= dac_mem_waddr_m2_g2b_s;
end
end
ad_g2b #(
.DATA_WIDTH (DMA_ADDRESS_WIDTH))
i_dac_mem_waddr_g2b (
.din (dac_mem_waddr_m2),
.dout (dac_mem_waddr_m2_g2b_s));
// define underflow
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_xfer_out_m1 <= 1'b0;
dac_xfer_out <= 1'b0;
dac_dunf <= 1'b0;
end else begin
dac_xfer_out_m1 <= dma_xfer_req;
dac_xfer_out <= dac_xfer_out_m1;
if (dac_valid == 1'b1) begin
dac_dunf <= dac_mem_empty_s;
end
end
end
// DAC data output logic
always @(posedge dac_clk) begin
if (dac_dunf == 1'b1) begin
dac_data <= 0;
end else begin
dac_data <= dac_mem_rdata_s;
end
end
endmodule