298 lines
9.5 KiB
Verilog
298 lines
9.5 KiB
Verilog
// - Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in
|
|
// the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// - Neither the name of Analog Devices, Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
// - The use of this software may or may not infringe the patent rights
|
|
// of one or more patent holders. This license does not release you
|
|
// from the requirement that you obtain separate licenses from these
|
|
// patent holders to use this software.
|
|
// - Use of the software either in source or binary form, must be run
|
|
// on or directly connected to an Analog Devices Inc. component.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
|
// PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
//
|
|
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
|
|
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// This interface includes both the transmit and receive components -
|
|
// They both uses the same clock (sourced from the receiving side).
|
|
// assumes RX_IQ is 1 for I and 0 for Q (RX_IFIRST = 1 , RXIQ_HILO = 1)
|
|
|
|
`timescale 1ns/100ps
|
|
|
|
module axi_ad9963_if #(
|
|
|
|
// this parameter controls the buffer type based on the target device.
|
|
|
|
parameter DEVICE_TYPE = 0,
|
|
parameter DAC_IODELAY_ENABLE = 0,
|
|
parameter IO_DELAY_GROUP = "dev_if_delay_group") (
|
|
|
|
// physical interface (receive)
|
|
|
|
input trx_clk,
|
|
input trx_iq,
|
|
input [11:0] trx_data,
|
|
|
|
// physical interface (transmit)
|
|
|
|
output tx_clk,
|
|
output tx_iq,
|
|
output [11:0] tx_data,
|
|
|
|
// clock (common to both receive and transmit)
|
|
|
|
input rst,
|
|
output l_clk,
|
|
output dac_clk,
|
|
|
|
// receive data path interface
|
|
|
|
output reg adc_valid,
|
|
output reg [23:0] adc_data,
|
|
output reg adc_status,
|
|
|
|
// transmit data path interface
|
|
|
|
input dac_valid,
|
|
input [23:0] dac_data,
|
|
|
|
// delay interface
|
|
|
|
input up_clk,
|
|
input [12:0] up_adc_dld,
|
|
input [64:0] up_adc_dwdata,
|
|
output [64:0] up_adc_drdata,
|
|
input [13:0] up_dac_dld,
|
|
input [69:0] up_dac_dwdata,
|
|
output [69:0] up_dac_drdata,
|
|
input delay_clk,
|
|
input delay_rst,
|
|
output delay_locked);
|
|
|
|
// internal registers
|
|
|
|
reg [11:0] rx_data_p = 0;
|
|
reg [11:0] tx_data_p = 'd0;
|
|
reg [11:0] tx_data_n = 'd0;
|
|
reg tx_n_iq = 'd0;
|
|
reg tx_p_iq = 'd0;
|
|
|
|
// internal signals
|
|
|
|
wire [11:0] rx_data_p_s;
|
|
wire [11:0] rx_data_n_s;
|
|
wire rx_iq_p_s;
|
|
wire rx_iq_n_s;
|
|
|
|
wire feedback_clk;
|
|
wire tx_clk_pll;
|
|
|
|
genvar l_inst;
|
|
|
|
always @(posedge l_clk) begin
|
|
if( rx_iq_p_s == 1'b1) begin
|
|
adc_data <= {rx_data_n_s, rx_data_p_s} ; // data[11:00] I
|
|
adc_valid <= 1'b1; // data[23:12] Q
|
|
end else begin
|
|
rx_data_p <= rx_data_p_s; // if this happens it means that risedge data is sampled on falledge
|
|
adc_data <= {rx_data_p, rx_data_n_s} ; // so we take current N data with previous P data
|
|
adc_valid <= 1'b1; // in order to have data sampled at the same instance sent to the DMA
|
|
end
|
|
end
|
|
|
|
always @(posedge dac_clk) begin
|
|
if(dac_valid == 1'b1) begin
|
|
tx_data_p <= dac_data[11:0] ;
|
|
tx_data_n <= dac_data[23:12];
|
|
tx_p_iq <= 1'b1;
|
|
tx_n_iq <= 1'b0;
|
|
end
|
|
end
|
|
|
|
always @(posedge l_clk) begin
|
|
if (rst == 1'b1) begin
|
|
adc_status <= 1'b0;
|
|
end else begin
|
|
adc_status <= 1'b1;
|
|
end
|
|
end
|
|
|
|
// device clock interface (receive clock)
|
|
|
|
BUFG i_clk_gbuf (
|
|
.I (trx_clk),
|
|
.O (l_clk));
|
|
|
|
// receive data interface, ibuf -> idelay -> iddr
|
|
|
|
generate
|
|
for (l_inst = 0; l_inst <= 11; l_inst = l_inst + 1) begin: g_rx_data
|
|
ad_lvds_in #(
|
|
.SINGLE_ENDED (1),
|
|
.DEVICE_TYPE (DEVICE_TYPE),
|
|
.IODELAY_CTRL (0),
|
|
.IODELAY_GROUP (IO_DELAY_GROUP))
|
|
i_rx_data (
|
|
.rx_clk (l_clk),
|
|
.rx_data_in_p (trx_data[l_inst]),
|
|
.rx_data_in_n (1'b0),
|
|
.rx_data_p (rx_data_p_s[l_inst]),
|
|
.rx_data_n (rx_data_n_s[l_inst]),
|
|
.up_clk (up_clk),
|
|
.up_dld (up_adc_dld[l_inst]),
|
|
.up_dwdata (up_adc_dwdata[((l_inst*5)+4):(l_inst*5)]),
|
|
.up_drdata (up_adc_drdata[((l_inst*5)+4):(l_inst*5)]),
|
|
.delay_clk (delay_clk),
|
|
.delay_rst (delay_rst),
|
|
.delay_locked ());
|
|
end
|
|
endgenerate
|
|
|
|
// receive iq interface, ibuf -> idelay -> iddr
|
|
|
|
ad_lvds_in #(
|
|
.SINGLE_ENDED (1),
|
|
.DEVICE_TYPE (DEVICE_TYPE),
|
|
.IODELAY_CTRL (1),
|
|
.IODELAY_GROUP (IO_DELAY_GROUP))
|
|
i_rx_iq (
|
|
.rx_clk (l_clk),
|
|
.rx_data_in_p (trx_iq),
|
|
.rx_data_in_n (1'b0),
|
|
.rx_data_p (rx_iq_p_s),
|
|
.rx_data_n (rx_iq_n_s),
|
|
.up_clk (up_clk),
|
|
.up_dld (up_adc_dld[12]),
|
|
.up_dwdata (up_adc_dwdata[64:60]),
|
|
.up_drdata (up_adc_drdata[64:60]),
|
|
.delay_clk (delay_clk),
|
|
.delay_rst (delay_rst),
|
|
.delay_locked (delay_locked));
|
|
|
|
// transmit data interface, oddr -> obuf
|
|
|
|
generate
|
|
for (l_inst = 0; l_inst <= 11; l_inst = l_inst + 1) begin: g_tx_data
|
|
ad_lvds_out #(
|
|
.DEVICE_TYPE (DEVICE_TYPE),
|
|
.SINGLE_ENDED (1),
|
|
.IODELAY_ENABLE (DAC_IODELAY_ENABLE),
|
|
.IODELAY_CTRL (0),
|
|
.IODELAY_GROUP (IO_DELAY_GROUP))
|
|
i_tx_data (
|
|
.tx_clk (dac_clk),
|
|
.tx_data_p (tx_data_p[l_inst]),
|
|
.tx_data_n (tx_data_n[l_inst]),
|
|
.tx_data_out_p (tx_data[l_inst]),
|
|
.tx_data_out_n (),
|
|
.up_clk (up_clk),
|
|
.up_dld (up_dac_dld[l_inst]),
|
|
.up_dwdata (up_dac_dwdata[((l_inst*5)+4):(l_inst*5)]),
|
|
.up_drdata (up_dac_drdata[((l_inst*5)+4):(l_inst*5)]),
|
|
.delay_clk (delay_clk),
|
|
.delay_rst (delay_rst),
|
|
.delay_locked ());
|
|
end
|
|
endgenerate
|
|
|
|
// transmit iq interface, oddr -> obuf
|
|
|
|
ad_lvds_out #(
|
|
.DEVICE_TYPE (DEVICE_TYPE),
|
|
.SINGLE_ENDED (1),
|
|
.IODELAY_ENABLE (DAC_IODELAY_ENABLE),
|
|
.IODELAY_CTRL (0),
|
|
.IODELAY_GROUP (IO_DELAY_GROUP))
|
|
i_tx_iq (
|
|
.tx_clk (dac_clk),
|
|
.tx_data_p (tx_p_iq),
|
|
.tx_data_n (tx_n_iq),
|
|
.tx_data_out_p (tx_iq),
|
|
.tx_data_out_n (),
|
|
.up_clk (up_clk),
|
|
.up_dld (up_dac_dld[12]),
|
|
.up_dwdata (up_dac_dwdata[64:60]),
|
|
.up_drdata (up_dac_drdata[64:60]),
|
|
.delay_clk (delay_clk),
|
|
.delay_rst (delay_rst),
|
|
.delay_locked ());
|
|
|
|
// transmit clock interface, oddr -> obuf
|
|
PLLE2_BASE #(
|
|
.BANDWIDTH("OPTIMIZED"), // OPTIMIZED, HIGH, LOW
|
|
.CLKFBOUT_MULT(15), // Multiply value for all CLKOUT, (2-64)
|
|
.CLKFBOUT_PHASE(0.0), // Phase offset in degrees of CLKFB, (-360.000-360.000).
|
|
.CLKIN1_PERIOD(10.0), // Input clock period in ns to ps resolution (i.e. 33.333 is 30 MHz).
|
|
// CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: Divide amount for each CLKOUT (1-128)
|
|
.CLKOUT0_DIVIDE(20),
|
|
.CLKOUT1_DIVIDE(20),
|
|
.CLKOUT2_DIVIDE(1),
|
|
.CLKOUT3_DIVIDE(1),
|
|
.CLKOUT4_DIVIDE(1),
|
|
.CLKOUT5_DIVIDE(1),
|
|
// CLKOUT0_DUTY_CYCLE - CLKOUT5_DUTY_CYCLE: Duty cycle for each CLKOUT (0.001-0.999).
|
|
.CLKOUT0_DUTY_CYCLE(0.5),
|
|
.CLKOUT1_DUTY_CYCLE(0.5),
|
|
.CLKOUT2_DUTY_CYCLE(0.5),
|
|
.CLKOUT3_DUTY_CYCLE(0.5),
|
|
.CLKOUT4_DUTY_CYCLE(0.5),
|
|
.CLKOUT5_DUTY_CYCLE(0.5),
|
|
// CLKOUT0_PHASE - CLKOUT5_PHASE: Phase offset for each CLKOUT (-360.000-360.000).
|
|
.CLKOUT0_PHASE(90.0),
|
|
.CLKOUT1_PHASE(0.0),
|
|
.CLKOUT2_PHASE(0.0),
|
|
.CLKOUT3_PHASE(0.0),
|
|
.CLKOUT4_PHASE(0.0),
|
|
.CLKOUT5_PHASE(0.0),
|
|
.DIVCLK_DIVIDE(1), // Master division value, (1-56)
|
|
.REF_JITTER1(0.0), // Reference input jitter in UI, (0.000-0.999).
|
|
.STARTUP_WAIT("FALSE") // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
|
|
)
|
|
PLLE2_BASE_inst (
|
|
// Clock Outputs: 1-bit (each) output: User configurable clock outputs
|
|
.CLKOUT0(tx_clk_pll), // 1-bit output: CLKOUT0
|
|
.CLKOUT1(dac_clk), // 1-bit output: CLKOUT1
|
|
.CLKOUT2(), // 1-bit output: CLKOUT2
|
|
.CLKOUT3(), // 1-bit output: CLKOUT3
|
|
.CLKOUT4(), // 1-bit output: CLKOUT4
|
|
.CLKOUT5(), // 1-bit output: CLKOUT5
|
|
// Feedback Clocks: 1-bit (each) output: Clock feedback ports
|
|
.CLKFBOUT(feedback_clk), // 1-bit output: Feedback clock
|
|
.LOCKED(), // 1-bit output: LOCK
|
|
.CLKIN1(l_clk), // 1-bit input: Input clock
|
|
// Control Ports: 1-bit (each) input: PLL control ports
|
|
.PWRDWN(1'b0), // 1-bit input: Power-down
|
|
.RST(rst), // 1-bit input: Reset
|
|
// Feedback Clocks: 1-bit (each) input: Clock feedback ports
|
|
.CLKFBIN(feedback_clk) // 1-bit input: Feedback clock
|
|
);
|
|
|
|
ODDR #(
|
|
.DDR_CLK_EDGE ("SAME_EDGE"),
|
|
.INIT (1'b0),
|
|
.SRTYPE ("ASYNC"))
|
|
i_tx_clk_oddr(
|
|
.CE (1'b1),
|
|
.R (1'b0),
|
|
.S (1'b0),
|
|
.C (tx_clk_pll),
|
|
.D1 (1'b1),
|
|
.D2 (1'b0),
|
|
.Q (tx_clk));
|
|
|
|
endmodule
|
|
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|