pluto_hdl_adi/library/util_dacfifo/util_dacfifo.v

322 lines
9.3 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// Each core or library found in this collection may have its own licensing terms.
// The user should keep this in in mind while exploring these cores.
//
// Redistribution and use in source and binary forms,
// with or without modification of this file, are permitted under the terms of either
// (at the option of the user):
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory, or at:
// https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
//
// OR
//
// 2. An ADI specific BSD license as noted in the top level directory, or on-line at:
// https://github.com/analogdevicesinc/hdl/blob/dev/LICENSE
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_dacfifo #(
parameter ADDRESS_WIDTH = 6,
parameter DATA_WIDTH = 128) (
// DMA interface
input dma_clk,
input dma_rst,
input dma_valid,
input [(DATA_WIDTH-1):0] dma_data,
output reg dma_ready,
input dma_xfer_req,
input dma_xfer_last,
// DAC interface
input dac_clk,
input dac_rst,
input dac_valid,
output reg [(DATA_WIDTH-1):0] dac_data,
output reg dac_dunf,
output reg dac_xfer_out,
input bypass);
localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4;
// internal registers
reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_raddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_addr_diff = 'b0;
reg dma_ready_fifo = 1'b0;
reg dma_ready_bypass = 1'b0;
reg dma_bypass = 1'b0;
reg dma_bypass_m1 = 1'b0;
reg dma_xfer_out_fifo = 1'b0;
reg dma_xfer_out_bypass = 1'b0;
reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_raddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0;
reg dac_mem_ready = 1'b0;
reg dac_xfer_out_fifo = 1'b0;
reg dac_xfer_out_fifo_m1 = 1'b0;
reg dac_xfer_out_bypass = 1'b0;
reg dac_xfer_out_bypass_m1 = 1'b0;
reg dac_bypass = 1'b0;
reg dac_bypass_m1 = 1'b0;
// internal wires
wire dma_wren_s;
wire [(DATA_WIDTH-1):0] dac_data_s;
wire [(ADDRESS_WIDTH):0] dma_addr_diff_s;
wire [(ADDRESS_WIDTH):0] dac_addr_diff_s;
// binary to grey conversion
function [9:0] b2g;
input [9:0] b;
reg [9:0] g;
begin
g[9] = b[9];
g[8] = b[9] ^ b[8];
g[7] = b[8] ^ b[7];
g[6] = b[7] ^ b[6];
g[5] = b[6] ^ b[5];
g[4] = b[5] ^ b[4];
g[3] = b[4] ^ b[3];
g[2] = b[3] ^ b[2];
g[1] = b[2] ^ b[1];
g[0] = b[1] ^ b[0];
b2g = g;
end
endfunction
// grey to binary conversion
function [9:0] g2b;
input [9:0] g;
reg [9:0] b;
begin
b[9] = g[9];
b[8] = b[9] ^ g[8];
b[7] = b[8] ^ g[7];
b[6] = b[7] ^ g[6];
b[5] = b[6] ^ g[5];
b[4] = b[5] ^ g[4];
b[3] = b[4] ^ g[3];
b[2] = b[3] ^ g[2];
b[1] = b[2] ^ g[1];
b[0] = b[1] ^ g[0];
g2b = b;
end
endfunction
// DMA / Write interface
// fifo is always ready, if it's not in bypass mode
always @(posedge dma_clk) begin
if(dma_rst == 1'b1) begin
dma_ready_fifo <= 1'b0;
end else begin
dma_ready_fifo <= 1'b1;
end
end
// if bypass is enabled, fifo request data until reaches the high threshold.
assign dma_addr_diff_s = {1'b1, dma_waddr} - dma_raddr;
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_addr_diff <= 'b0;
dma_raddr_m1 <= 'b0;
dma_raddr_m2 <= 'b0;
dma_raddr <= 'b0;
dma_ready_bypass <= 1'b0;
end else begin
dma_raddr_m1 <= dac_raddr_g;
dma_raddr_m2 <= dma_raddr_m1;
dma_raddr <= g2b(dma_raddr_m2);
dma_addr_diff <= dma_addr_diff_s[ADDRESS_WIDTH-1:0];
if (dma_addr_diff >= FIFO_THRESHOLD_HI) begin
dma_ready_bypass <= 1'b0;
end else begin
dma_ready_bypass <= 1'b1;
end
end
end
// write address generation
assign dma_wren_s = dma_valid & dma_xfer_req & dma_ready;
always @(posedge dma_clk) begin
if(dma_rst == 1'b1) begin
dma_waddr <= 'b0;
dma_waddr_g <= 'b0;
dma_xfer_out_fifo <= 1'b0;
dma_xfer_out_bypass <= 1'b0;
end else begin
if (dma_wren_s == 1'b1) begin
dma_waddr <= dma_waddr + 1;
dma_xfer_out_fifo <= 1'b0;
end
if (dma_xfer_last == 1'b1) begin
dma_waddr <= 'b0;
dma_xfer_out_fifo <= 1'b1;
end
dma_waddr_g <= b2g(dma_waddr);
dma_xfer_out_bypass <= dma_xfer_req;
end
end
// save the last write address
always @(posedge dma_clk) begin
if (dma_rst == 1'b1) begin
dma_lastaddr_g <= 'b0;
end else begin
if (dma_bypass == 1'b0) begin
dma_lastaddr_g <= (dma_xfer_last == 1'b1)? b2g(dma_waddr) : dma_lastaddr_g;
end
end
end
// DAC / Read interface
// The memory module is ready if it's not empty
assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr;
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_addr_diff <= 'b0;
dac_waddr_m1 <= 'b0;
dac_waddr_m2 <= 'b0;
dac_waddr <= 'b0;
dac_mem_ready <= 1'b0;
end else begin
dac_waddr_m1 <= dma_waddr_g;
dac_waddr_m2 <= dac_waddr_m1;
dac_waddr <= g2b(dac_waddr_m2);
dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0];
if (dac_addr_diff > 0) begin
dac_mem_ready <= 1'b1;
end else begin
dac_mem_ready <= 1'b0;
end
end
end
// sync lastaddr to dac clock domain
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_lastaddr_m1 <= 1'b0;
dac_lastaddr_m2 <= 1'b0;
dac_xfer_out_fifo_m1 <= 1'b0;
dac_xfer_out_fifo <= 1'b0;
dac_xfer_out_bypass_m1 <= 1'b0;
dac_xfer_out_bypass <= 1'b0;
end else begin
dac_lastaddr_m1 <= dma_lastaddr_g;
dac_lastaddr_m2 <= dac_lastaddr_m1;
dac_lastaddr <= g2b(dac_lastaddr_m2);
dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo;
dac_xfer_out_fifo <= dac_xfer_out_fifo_m1;
dac_xfer_out_bypass_m1 <= dma_xfer_out_bypass;
dac_xfer_out_bypass <= dac_xfer_out_bypass_m1;
end
end
// generate dac read address
assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) : (dac_valid & dac_xfer_out_fifo);
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_raddr <= 'b0;
dac_raddr_g <= 'b0;
end else begin
if (dac_mem_ren_s == 1'b1) begin
if (dac_lastaddr == 'b0) begin
dac_raddr <= dac_raddr + 1;
end else begin
dac_raddr <= (dac_raddr < dac_lastaddr) ? (dac_raddr + 1) : 'b0;
end
end
dac_raddr_g <= b2g(dac_raddr);
end
end
// memory instantiation
ad_mem #(
.ADDRESS_WIDTH (ADDRESS_WIDTH),
.DATA_WIDTH (DATA_WIDTH))
i_mem_fifo (
.clka (dma_clk),
.wea (dma_wren_s),
.addra (dma_waddr),
.dina (dma_data),
.clkb (dac_clk),
.addrb (dac_raddr),
.doutb (dac_data_s));
// define underflow
// underflow make sense just if bypass is enabled
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_dunf <= 1'b0;
end else begin
dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_out_bypass & ~dac_mem_ren_s) : 1'b0;
end
end
// output logic
always @(posedge dma_clk) begin
dma_bypass_m1 <= bypass;
dma_bypass <= dma_bypass_m1;
end
always @(posedge dac_clk) begin
dac_bypass_m1 <= bypass;
dac_bypass <= dac_bypass_m1;
end
always @(posedge dma_clk) begin
dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass : dma_ready_fifo;
end
always @(posedge dac_clk) begin
dac_data <= dac_data_s;
dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_out_bypass : dac_xfer_out_fifo;
end
endmodule