pluto_hdl_adi/library/util_dacfifo/util_dacfifo.v

304 lines
11 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2015(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_dacfifo (
// clock signals
dac_clk,
dac_rst,
// transfer request from DMAC
dac_xfer_req,
// fifo IN interface/channel
data_in_0,
dvalid_in_0,
data_in_1,
dvalid_in_1,
data_in_2,
dvalid_in_2,
data_in_3,
dvalid_in_3,
data_in_4,
dvalid_in_4,
data_in_5,
dvalid_in_5,
data_in_6,
dvalid_in_6,
data_in_7,
dvalid_in_7,
// fifo OUT interface/channel
dvalid_out_0,
data_out_0,
dvalid_out_1,
data_out_1,
dvalid_out_2,
data_out_2,
dvalid_out_3,
data_out_3,
dvalid_out_4,
data_out_4,
dvalid_out_5,
data_out_5,
dvalid_out_6,
data_out_6,
dvalid_out_7,
data_out_7
);
// parameters
parameter C_CH_DW = 16;
parameter C_FIFO_AW = 10;
parameter C_CH_CNT = 8;
localparam FIFO_DW = C_CH_CNT * C_CH_DW;
// port definitions
input dac_clk;
input dac_rst;
input dac_xfer_req;
input [(C_CH_DW-1):0] data_in_0;
input dvalid_in_0;
input [(C_CH_DW-1):0] data_in_1;
input dvalid_in_1;
input [(C_CH_DW-1):0] data_in_2;
input dvalid_in_2;
input [(C_CH_DW-1):0] data_in_3;
input dvalid_in_3;
input [(C_CH_DW-1):0] data_in_4;
input dvalid_in_4;
input [(C_CH_DW-1):0] data_in_5;
input dvalid_in_5;
input [(C_CH_DW-1):0] data_in_6;
input dvalid_in_6;
input [(C_CH_DW-1):0] data_in_7;
input dvalid_in_7;
input dvalid_out_0;
output [(C_CH_DW-1):0] data_out_0;
input dvalid_out_1;
output [(C_CH_DW-1):0] data_out_1;
input dvalid_out_2;
output [(C_CH_DW-1):0] data_out_2;
input dvalid_out_3;
output [(C_CH_DW-1):0] data_out_3;
input dvalid_out_4;
output [(C_CH_DW-1):0] data_out_4;
input dvalid_out_5;
output [(C_CH_DW-1):0] data_out_5;
input dvalid_out_6;
output [(C_CH_DW-1):0] data_out_6;
input dvalid_out_7;
output [(C_CH_DW-1):0] data_out_7;
// internal signals
wire [(FIFO_DW-1):0] data_in_s;
wire [(FIFO_DW-1):0] data_out_s;
wire dvalid_in_s;
wire dvalid_out_s;
// internal registers
reg fifo_wren = 1'b1;
reg dac_xfer_req_d = 'b0;
reg [(C_FIFO_AW-1):0] dac_waddr = 'b0;
reg [(C_FIFO_AW-1):0] dac_waddr_d = 'b0;
reg [(C_FIFO_AW-1):0] dac_raddr = 'b0;
reg [(C_FIFO_AW-1):0] dac_maxaddr = 'b0;
reg dvalid_in = 1'b0;
reg [(FIFO_DW-1):0] data_in = 'b0;
reg [(FIFO_DW-1):0] data_in_d = 'b0;
// internal logic
assign data_in_s = (C_CH_CNT == 8) ? {data_in_7, data_in_6, data_in_5,
data_in_4, data_in_3, data_in_2,
data_in_1, data_in_0} :
(C_CH_CNT == 7) ? {data_in_6, data_in_5, data_in_4,
data_in_3, data_in_2, data_in_1,
data_in_0} :
(C_CH_CNT == 6) ? {data_in_5, data_in_4, data_in_3,
data_in_2, data_in_1, data_in_0} :
(C_CH_CNT == 5) ? {data_in_4, data_in_3, data_in_2,
data_in_1, data_in_0} :
(C_CH_CNT == 4) ? {data_in_3, data_in_2, data_in_1,
data_in_0} :
(C_CH_CNT == 3) ? {data_in_2, data_in_1, data_in_0} :
(C_CH_CNT == 2) ? {data_in_1, data_in_0} :
(C_CH_CNT == 1) ? data_in_0 :
data_in_0;
assign dvalid_in_s = (C_CH_CNT == 8) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2 &
dvalid_in_3 & dvalid_in_4 & dvalid_in_5 &
dvalid_in_6 & dvalid_in_7) :
(C_CH_CNT == 7) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2 &
dvalid_in_3 & dvalid_in_4 & dvalid_in_5 &
dvalid_in_6) :
(C_CH_CNT == 6) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2 &
dvalid_in_3 & dvalid_in_4 & dvalid_in_5) :
(C_CH_CNT == 5) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2 &
dvalid_in_3 & dvalid_in_4) :
(C_CH_CNT == 4) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2 &
dvalid_in_3) :
(C_CH_CNT == 3) ? (dvalid_in_0 & dvalid_in_1 & dvalid_in_2) :
(C_CH_CNT == 2) ? (dvalid_in_0 & dvalid_in_1) :
(C_CH_CNT == 1) ? dvalid_in_0 :
dvalid_in_0;
// free running write address generator
// running just when xfer_req is asserted
// a new xfer_req resets the write address
always @(posedge dac_clk) begin
if(dac_rst == 1'b1) begin
dac_xfer_req_d <= 1'b0;
dac_maxaddr <= {C_FIFO_AW{1'b1}};
end else begin
dac_xfer_req_d <= dac_xfer_req;
end
if (dac_xfer_req_d && ~dac_xfer_req) begin
dac_maxaddr <= dac_waddr_d;
end
end
always @(posedge dac_clk) begin
if(dac_rst == 1'b1) begin
dac_waddr <= 'h0;
dac_waddr_d <= 'h0;
end if(dvalid_in == 1'b1) begin
dac_waddr <= (dac_xfer_req_d == 1'b1) ? (dac_waddr + 1) : 'h0;
dac_waddr_d <= dac_waddr;
end
end
// pipelines
always @(posedge dac_clk) begin
if(dac_rst == 1'b1) begin
data_in <= 'b0;
data_in_d <= 'b0;
dvalid_in <= 1'b0;
end else begin
data_in <= data_in_s;
data_in_d <= data_in;
dvalid_in <= dvalid_in_s;
end
end
always @(posedge dac_clk) begin
if(dac_rst == 1'b1) begin
fifo_wren <= 1'b0;
end else begin
fifo_wren <= dvalid_in & dac_xfer_req_d;
end
end
// read interface
assign dvalid_out_s = (C_CH_CNT == 8) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2 &
dvalid_out_3 & dvalid_out_4 & dvalid_out_5 &
dvalid_out_6 & dvalid_out_7) :
(C_CH_CNT == 7) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2 &
dvalid_out_3 & dvalid_out_4 & dvalid_out_5 &
dvalid_out_6) :
(C_CH_CNT == 6) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2 &
dvalid_out_3 & dvalid_out_4 & dvalid_out_5) :
(C_CH_CNT == 5) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2 &
dvalid_out_3 & dvalid_out_4) :
(C_CH_CNT == 4) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2 &
dvalid_out_3) :
(C_CH_CNT == 3) ? (dvalid_out_0 & dvalid_out_1 & dvalid_out_2) :
(C_CH_CNT == 2) ? (dvalid_out_0 & dvalid_out_1) :
(C_CH_CNT == 1) ? dvalid_out_0 :
dvalid_out_0;
// free running read address generator
// reads until the max address
always @(posedge dac_clk) begin
if(dac_rst == 1'b1) begin
dac_raddr <= 'b0;
end else begin
if(dvalid_out_s == 1'b1) begin
dac_raddr <= (dac_raddr < dac_maxaddr) ? (dac_raddr + 'b1) : 'b0;
end
end
end
// output logic
assign data_out_0 = (C_CH_CNT >= 1) ? data_out_s[(1*C_CH_DW-1): 0] : 'b0;
assign data_out_1 = (C_CH_CNT >= 2) ? data_out_s[(2*C_CH_DW-1):(1*C_CH_DW)] : 'b0;
assign data_out_2 = (C_CH_CNT >= 3) ? data_out_s[(3*C_CH_DW-1):(2*C_CH_DW)] : 'b0;
assign data_out_3 = (C_CH_CNT >= 4) ? data_out_s[(4*C_CH_DW-1):(3*C_CH_DW)] : 'b0;
assign data_out_4 = (C_CH_CNT >= 5) ? data_out_s[(5*C_CH_DW-1):(4*C_CH_DW)] : 'b0;
assign data_out_5 = (C_CH_CNT >= 6) ? data_out_s[(6*C_CH_DW-1):(5*C_CH_DW)] : 'b0;
assign data_out_6 = (C_CH_CNT >= 7) ? data_out_s[(7*C_CH_DW-1):(6*C_CH_DW)] : 'b0;
assign data_out_7 = (C_CH_CNT == 8) ? data_out_s[(8*C_CH_DW-1):(7*C_CH_DW)] : 'b0;
// memory instantiation
ad_mem #(
.ADDR_WIDTH (C_FIFO_AW),
.DATA_WIDTH (FIFO_DW))
i_mem_fifo (
.clka (dac_clk),
.wea (fifo_wren),
.addra (dac_waddr_d),
.dina (data_in_d),
.clkb (dac_clk),
.addrb (dac_raddr),
.doutb (data_out_s));
endmodule