pluto_hdl_adi/library/axi_ad9643/axi_ad9643_if.v

205 lines
6.5 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory of
// the repository (LICENSE_GPL2), and at: <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license as noted in the top level directory, or on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
// This is the LVDS/DDR interface, note that overrange is independent of data path,
// software will not be able to relate overrange to a specific sample!
// Alternative is to concatenate sample value and or status for data.
`timescale 1ns/100ps
module axi_ad9643_if #(
parameter DEVICE_TYPE = 0,
parameter IO_DELAY_GROUP = "adc_if_delay_group") (
// adc interface (clk, data, over-range)
input adc_clk_in_p,
input adc_clk_in_n,
input [13:0] adc_data_in_p,
input [13:0] adc_data_in_n,
input adc_or_in_p,
input adc_or_in_n,
// interface outputs
output adc_clk,
output reg [13:0] adc_data_a,
output reg [13:0] adc_data_b,
output reg adc_or_a,
output reg adc_or_b,
output reg adc_status,
// processor control signals
input adc_ddr_edgesel,
input adc_pin_mode,
// delay control signals
input up_clk,
input [14:0] up_dld,
input [74:0] up_dwdata,
output [74:0] up_drdata,
input delay_clk,
input delay_rst,
output delay_locked);
// internal registers
reg [13:0] adc_data_p = 'd0;
reg [13:0] adc_data_n = 'd0;
reg [13:0] adc_data_p_d = 'd0;
reg adc_or_p = 'd0;
reg adc_or_n = 'd0;
reg adc_or_p_d = 'd0;
reg [13:0] adc_data_mux_a = 'd0;
reg [13:0] adc_data_mux_b = 'd0;
reg adc_or_mux_a = 'd0;
reg adc_or_mux_b = 'd0;
// internal signals
wire [13:0] adc_data_p_s;
wire [13:0] adc_data_n_s;
wire adc_or_p_s;
wire adc_or_n_s;
genvar l_inst;
// two data pin modes are supported-
// mux - across clock edges (rising or falling edges),
// mux - within clock edges (lower 7 bits and upper 7 bits)
always @(posedge adc_clk) begin
adc_status <= 1'b1;
adc_data_p <= adc_data_p_s;
adc_data_n <= adc_data_n_s;
adc_data_p_d <= adc_data_p;
adc_or_p <= adc_or_p_s;
adc_or_n <= adc_or_n_s;
adc_or_p_d <= adc_or_p;
end
always @(posedge adc_clk) begin
if (adc_ddr_edgesel == 1'b1) begin
adc_data_mux_a <= adc_data_p_d;
adc_data_mux_b <= adc_data_n;
adc_or_mux_a <= adc_or_p_d;
adc_or_mux_b <= adc_or_n;
end else begin
adc_data_mux_a <= adc_data_n;
adc_data_mux_b <= adc_data_p;
adc_or_mux_a <= adc_or_n;
adc_or_mux_b <= adc_or_p;
end
end
always @(posedge adc_clk) begin
if (adc_pin_mode == 1'b1) begin
adc_data_a <= adc_data_mux_a;
adc_data_b <= adc_data_mux_b;
adc_or_a <= adc_or_mux_a;
adc_or_b <= adc_or_mux_b;
end else begin
adc_data_a <= { adc_data_mux_b[13], adc_data_mux_a[13],
adc_data_mux_b[12], adc_data_mux_a[12],
adc_data_mux_b[11], adc_data_mux_a[11],
adc_data_mux_b[10], adc_data_mux_a[10],
adc_data_mux_b[ 9], adc_data_mux_a[ 9],
adc_data_mux_b[ 8], adc_data_mux_a[ 8],
adc_data_mux_b[ 7], adc_data_mux_a[ 7]};
adc_data_b <= { adc_data_mux_b[ 6], adc_data_mux_a[ 6],
adc_data_mux_b[ 5], adc_data_mux_a[ 5],
adc_data_mux_b[ 4], adc_data_mux_a[ 4],
adc_data_mux_b[ 3], adc_data_mux_a[ 3],
adc_data_mux_b[ 2], adc_data_mux_a[ 2],
adc_data_mux_b[ 1], adc_data_mux_a[ 1],
adc_data_mux_b[ 0], adc_data_mux_a[ 0]};
adc_or_a <= adc_or_mux_a;
adc_or_b <= adc_or_mux_b;
end
end
// data interface
generate
for (l_inst = 0; l_inst <= 13; l_inst = l_inst + 1) begin : g_adc_if
ad_lvds_in #(
.DEVICE_TYPE (DEVICE_TYPE),
.IODELAY_CTRL (0),
.IODELAY_GROUP (IO_DELAY_GROUP))
i_adc_data (
.rx_clk (adc_clk),
.rx_data_in_p (adc_data_in_p[l_inst]),
.rx_data_in_n (adc_data_in_n[l_inst]),
.rx_data_p (adc_data_p_s[l_inst]),
.rx_data_n (adc_data_n_s[l_inst]),
.up_clk (up_clk),
.up_dld (up_dld[l_inst]),
.up_dwdata (up_dwdata[((l_inst*5)+4):(l_inst*5)]),
.up_drdata (up_drdata[((l_inst*5)+4):(l_inst*5)]),
.delay_clk (delay_clk),
.delay_rst (delay_rst),
.delay_locked ());
end
endgenerate
// over-range interface
ad_lvds_in #(
.DEVICE_TYPE (DEVICE_TYPE),
.IODELAY_CTRL (1),
.IODELAY_GROUP (IO_DELAY_GROUP))
i_adc_or (
.rx_clk (adc_clk),
.rx_data_in_p (adc_or_in_p),
.rx_data_in_n (adc_or_in_n),
.rx_data_p (adc_or_p_s),
.rx_data_n (adc_or_n_s),
.up_clk (up_clk),
.up_dld (up_dld[14]),
.up_dwdata (up_dwdata[74:70]),
.up_drdata (up_drdata[74:70]),
.delay_clk (delay_clk),
.delay_rst (delay_rst),
.delay_locked (delay_locked));
// clock
ad_lvds_clk #(
.DEVICE_TYPE (DEVICE_TYPE))
i_adc_clk (
.rst (1'b0),
.locked (),
.clk_in_p (adc_clk_in_p),
.clk_in_n (adc_clk_in_n),
.clk (adc_clk));
endmodule
// ***************************************************************************
// ***************************************************************************