pluto_hdl_adi/library/util_dacfifo/util_dacfifo.v

337 lines
10 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_dacfifo #(
parameter ADDRESS_WIDTH = 6,
parameter DATA_WIDTH = 128) (
// DMA interface
input dma_clk,
input dma_rst,
input dma_valid,
input [(DATA_WIDTH-1):0] dma_data,
output reg dma_ready,
input dma_xfer_req,
input dma_xfer_last,
// DAC interface
input dac_clk,
input dac_rst,
input dac_valid,
output reg [(DATA_WIDTH-1):0] dac_data,
output reg dac_dunf,
output reg dac_xfer_out,
input bypass);
localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4;
// internal registers
reg dma_init = 1'b0;
reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0;
reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0;
reg dma_bypass = 1'b0;
reg dma_bypass_m1 = 1'b0;
reg dma_xfer_req_d1 = 1'b0;
reg dma_xfer_req_d2 = 1'b0;
reg dma_xfer_out_fifo = 1'b0;
reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0;
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0;
reg dac_mem_ready = 1'b0;
reg dac_xfer_req_m1 = 1'b0;
reg dac_xfer_req = 1'b0;
reg dac_xfer_req_d = 1'b0;
reg dac_xfer_out_fifo = 1'b0;
reg dac_xfer_out_fifo_m1 = 1'b0;
reg dac_xfer_out_fifo_d = 1'b0;
reg dac_bypass = 1'b0;
reg dac_bypass_m1 = 1'b0;
// internal wires
wire dma_rst_int_s;
wire dma_wren_s;
wire dma_xfer_posedge_s;
wire dma_ready_bypass_s;
wire [(DATA_WIDTH-1):0] dac_data_fifo_s;
wire [(DATA_WIDTH-1):0] dac_data_bypass_s;
wire [ADDRESS_WIDTH:0] dac_addr_diff_s;
wire [(ADDRESS_WIDTH-1):0] dma_waddr_b2g_s;
wire [(ADDRESS_WIDTH-1):0] dac_waddr_g2b_s;
wire [(ADDRESS_WIDTH-1):0] dac_lastaddr_g2b_s;
wire dac_mem_ren_s;
wire dac_xfer_posedge_s;
wire dac_rst_int_s;
// internal reset generation
always @(posedge dma_clk) begin
dma_xfer_req_d1 <= dma_xfer_req;
dma_xfer_req_d2 <= dma_xfer_req_d1;
end
assign dma_xfer_posedge_s = ~dma_xfer_req_d2 & dma_xfer_req_d1;
// status register indicating that the module is in initialization phase
always @(posedge dma_clk) begin
if ((dma_rst == 1'b1) || (dma_xfer_last == 1'b1)) begin
dma_init <= 1'b0;
end else begin
if (dma_xfer_posedge_s == 1'b1) begin
dma_init <= 1'b1;
end
end
end
// if the module is not in initialization phase, it should go
// into reset at a positive edge of dma_xfer_req
assign dma_rst_int_s = dma_rst | (dma_xfer_posedge_s & ~dma_init);
// DMA / Write interface
// write address generation
assign dma_wren_s = dma_valid & dma_ready;
always @(posedge dma_clk) begin
if(dma_rst_int_s == 1'b1) begin
dma_waddr <= 'b0;
dma_waddr_g <= 'b0;
dma_xfer_out_fifo <= 1'b0;
end else begin
if (dma_wren_s == 1'b1) begin
dma_waddr <= dma_waddr + 1'b1;
end
if (dma_xfer_last == 1'b1) begin
dma_waddr <= 'b0;
dma_xfer_out_fifo <= 1'b1;
end
dma_waddr_g <= dma_waddr_b2g_s;
end
end
ad_b2g #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dma_waddr_b2g (
.din (dma_waddr),
.dout (dma_waddr_b2g_s));
// save the last write address
always @(posedge dma_clk) begin
if (dma_rst_int_s == 1'b1) begin
dma_lastaddr_g <= 'b0;
end else begin
if (dma_bypass == 1'b0) begin
dma_lastaddr_g <= (dma_xfer_last == 1'b1)? dma_waddr_b2g_s : dma_lastaddr_g;
end
end
end
// DAC / Read interface
always @(posedge dac_clk) begin
dac_xfer_req_m1 <= dma_xfer_req;
dac_xfer_req <= dac_xfer_req_m1;
dac_xfer_req_d <= dac_xfer_req;
end
assign dac_xfer_posedge_s = ~dac_xfer_req_d & dac_xfer_req;
// we can reset the DAC side at each positive edge of xfer_req, even if
// sometimes the reset is redundant
assign dac_rst_int_s = dac_xfer_req | dac_rst;
assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr;
// The memory module is ready if it's not empty
always @(posedge dac_clk) begin
if (dac_rst_int_s == 1'b1) begin
dac_addr_diff <= 'b0;
dac_waddr_m1 <= 'b0;
dac_waddr_m2 <= 'b0;
dac_waddr <= 'b0;
dac_mem_ready <= 1'b0;
end else begin
dac_waddr_m1 <= dma_waddr_g;
dac_waddr_m2 <= dac_waddr_m1;
dac_waddr <= dac_waddr_g2b_s;
dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0];
if (dac_addr_diff > 0) begin
dac_mem_ready <= 1'b1;
end else begin
dac_mem_ready <= 1'b0;
end
end
end
ad_g2b #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dac_waddr_g2b (
.din (dac_waddr_m2),
.dout (dac_waddr_g2b_s));
// sync lastaddr to dac clock domain
always @(posedge dac_clk) begin
if (dac_rst_int_s == 1'b1) begin
dac_lastaddr_m1 <= 1'b0;
dac_lastaddr_m2 <= 1'b0;
dac_xfer_out_fifo_m1 <= 1'b0;
dac_xfer_out_fifo <= 1'b0;
dac_xfer_out_fifo_d <= 1'b0;
end else begin
dac_lastaddr_m1 <= dma_lastaddr_g;
dac_lastaddr_m2 <= dac_lastaddr_m1;
dac_lastaddr <= dac_lastaddr_g2b_s;
dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo;
dac_xfer_out_fifo <= dac_xfer_out_fifo_m1;
if (dac_valid)
dac_xfer_out_fifo_d <= dac_xfer_out_fifo;
end
end
ad_g2b #(
.DATA_WIDTH (ADDRESS_WIDTH))
i_dac_lastaddr_g2b (
.din (dac_lastaddr_m2),
.dout (dac_lastaddr_g2b_s));
// generate dac read address
assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) :
(dac_valid & dac_xfer_out_fifo);
always @(posedge dac_clk) begin
if (dac_rst_int_s == 1'b1) begin
dac_raddr <= 'b0;
end else begin
if (dac_mem_ren_s == 1'b1) begin
if (dac_lastaddr == 'b0 || dac_raddr != dac_lastaddr) begin
dac_raddr <= dac_raddr + 1'b1;
end else begin
dac_raddr <= 'b0;
end
end
end
end
// memory instantiation
ad_mem #(
.ADDRESS_WIDTH (ADDRESS_WIDTH),
.DATA_WIDTH (DATA_WIDTH))
i_mem_fifo (
.clka (dma_clk),
.wea (dma_wren_s),
.addra (dma_waddr),
.dina (dma_data),
.clkb (dac_clk),
.reb (1'b1),
.addrb (dac_raddr),
.doutb (dac_data_fifo_s));
// define underflow
// underflow make sense just if bypass is enabled
always @(posedge dac_clk) begin
if (dac_rst_int_s == 1'b1) begin
dac_dunf <= 1'b0;
end else begin
dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_req & ~dac_mem_ren_s) : 1'b0;
end
end
// bypass logic
util_dacfifo_bypass #(
.DAC_DATA_WIDTH (DATA_WIDTH),
.DMA_DATA_WIDTH (DATA_WIDTH)
) i_dacfifo_bypass (
.dma_clk(dma_clk),
.dma_data(dma_data),
.dma_ready(dma_ready),
.dma_ready_out(dma_ready_bypass_s),
.dma_valid(dma_valid),
.dma_xfer_req(dma_xfer_req),
.dac_clk(dac_clk),
.dac_rst(dac_rst),
.dac_valid(dac_valid),
.dac_data(dac_data_bypass_s),
.dac_dunf(dac_dunf_bypass_s)
);
always @(posedge dma_clk) begin
dma_bypass_m1 <= bypass;
dma_bypass <= dma_bypass_m1;
end
always @(posedge dac_clk) begin
dac_bypass_m1 <= bypass;
dac_bypass <= dac_bypass_m1;
end
// the util_dacfifo is always ready for the DMA
always @(posedge dma_clk) begin
dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass_s : 1'b1;
end
always @(posedge dac_clk) begin
if (dac_valid) begin
dac_data <= (dac_bypass == 1'b1) ? dac_data_bypass_s : dac_data_fifo_s;
end
// this signal along with the dac_valid validate the data coming out from the buffer
dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_req : dac_xfer_out_fifo_d;
end
endmodule