162 lines
5.8 KiB
Verilog
162 lines
5.8 KiB
Verilog
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
|
|
//
|
|
// In this HDL repository, there are many different and unique modules, consisting
|
|
// of various HDL (Verilog or VHDL) components. The individual modules are
|
|
// developed independently, and may be accompanied by separate and unique license
|
|
// terms.
|
|
//
|
|
// The user should read each of these license terms, and understand the
|
|
// freedoms and responsibilities that he or she has by using this source/core.
|
|
//
|
|
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
|
// A PARTICULAR PURPOSE.
|
|
//
|
|
// Redistribution and use of source or resulting binaries, with or without modification
|
|
// of this file, are permitted under one of the following two license terms:
|
|
//
|
|
// 1. The GNU General Public License version 2 as published by the
|
|
// Free Software Foundation, which can be found in the top level directory
|
|
// of this repository (LICENSE_GPL2), and also online at:
|
|
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
|
|
//
|
|
// OR
|
|
//
|
|
// 2. An ADI specific BSD license, which can be found in the top level directory
|
|
// of this repository (LICENSE_ADIBSD), and also on-line at:
|
|
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
|
|
// This will allow to generate bit files and not release the source code,
|
|
// as long as it attaches to an ADI device.
|
|
//
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
|
|
// A simple asymetric memory. The write and read memory space must have the same size.
|
|
// 2^A_ADDRESS_WIDTH * A_DATA_WIDTH == 2^B_ADDRESS_WIDTH * B_DATA_WIDTH
|
|
|
|
`timescale 1ns/100ps
|
|
|
|
module ad_mem_asym #(
|
|
|
|
parameter A_ADDRESS_WIDTH = 8,
|
|
parameter A_DATA_WIDTH = 256,
|
|
parameter B_ADDRESS_WIDTH = 10,
|
|
parameter B_DATA_WIDTH = 64) (
|
|
|
|
input clka,
|
|
input wea,
|
|
input [A_ADDRESS_WIDTH-1:0] addra,
|
|
input [A_DATA_WIDTH-1:0] dina,
|
|
|
|
input clkb,
|
|
input [B_ADDRESS_WIDTH-1:0] addrb,
|
|
output reg [B_DATA_WIDTH-1:0] doutb);
|
|
|
|
|
|
localparam MEM_ADDRESS_WIDTH = (A_ADDRESS_WIDTH > B_ADDRESS_WIDTH) ? A_ADDRESS_WIDTH : B_ADDRESS_WIDTH;
|
|
localparam MEM_DATA_WIDTH = (A_DATA_WIDTH > B_DATA_WIDTH) ? B_DATA_WIDTH : A_DATA_WIDTH;
|
|
localparam MEM_SIZE = 2 ** MEM_ADDRESS_WIDTH;
|
|
localparam MEM_RATIO = (A_DATA_WIDTH > B_DATA_WIDTH) ? A_DATA_WIDTH/B_DATA_WIDTH : B_DATA_WIDTH/A_DATA_WIDTH;
|
|
localparam MEM_IO_COMP = (A_DATA_WIDTH > B_DATA_WIDTH) ? 1'b1 : 1'b0;
|
|
|
|
// internal registers
|
|
|
|
reg [MEM_DATA_WIDTH-1:0] m_ram[0:MEM_SIZE-1];
|
|
|
|
// write interface options
|
|
|
|
generate if (MEM_IO_COMP == 0) begin
|
|
always @(posedge clka) begin
|
|
if (wea == 1'b1) begin
|
|
m_ram[addra] <= dina;
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 2)) begin
|
|
always @(posedge clka) begin
|
|
if (wea == 1'b1) begin
|
|
m_ram[{addra, 1'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
|
m_ram[{addra, 1'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 4)) begin
|
|
always @(posedge clka) begin
|
|
if (wea == 1'b1) begin
|
|
m_ram[{addra, 2'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
|
m_ram[{addra, 2'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
|
m_ram[{addra, 2'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
|
m_ram[{addra, 2'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 1) && (MEM_RATIO == 8)) begin
|
|
always @(posedge clka) begin
|
|
if (wea == 1'b1) begin
|
|
m_ram[{addra, 3'd0}] <= dina[((1*B_DATA_WIDTH)-1):(B_DATA_WIDTH*0)];
|
|
m_ram[{addra, 3'd1}] <= dina[((2*B_DATA_WIDTH)-1):(B_DATA_WIDTH*1)];
|
|
m_ram[{addra, 3'd2}] <= dina[((3*B_DATA_WIDTH)-1):(B_DATA_WIDTH*2)];
|
|
m_ram[{addra, 3'd3}] <= dina[((4*B_DATA_WIDTH)-1):(B_DATA_WIDTH*3)];
|
|
m_ram[{addra, 3'd4}] <= dina[((5*B_DATA_WIDTH)-1):(B_DATA_WIDTH*4)];
|
|
m_ram[{addra, 3'd5}] <= dina[((6*B_DATA_WIDTH)-1):(B_DATA_WIDTH*5)];
|
|
m_ram[{addra, 3'd6}] <= dina[((7*B_DATA_WIDTH)-1):(B_DATA_WIDTH*6)];
|
|
m_ram[{addra, 3'd7}] <= dina[((8*B_DATA_WIDTH)-1):(B_DATA_WIDTH*7)];
|
|
end
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
// read interface options
|
|
|
|
generate if ((MEM_IO_COMP == 1) || (MEM_RATIO == 1)) begin
|
|
always @(posedge clkb) begin
|
|
doutb <= m_ram[addrb];
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 2)) begin
|
|
always @(posedge clkb) begin
|
|
doutb <= {m_ram[{addrb, 1'd1}],
|
|
m_ram[{addrb, 1'd0}]};
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 4)) begin
|
|
always @(posedge clkb) begin
|
|
doutb <= {m_ram[{addrb, 2'd3}],
|
|
m_ram[{addrb, 2'd2}],
|
|
m_ram[{addrb, 2'd1}],
|
|
m_ram[{addrb, 2'd0}]};
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
generate if ((MEM_IO_COMP == 0) && (MEM_RATIO == 8)) begin
|
|
always @(posedge clkb) begin
|
|
doutb <= {m_ram[{addrb, 3'd7}],
|
|
m_ram[{addrb, 3'd6}],
|
|
m_ram[{addrb, 3'd5}],
|
|
m_ram[{addrb, 3'd4}],
|
|
m_ram[{addrb, 3'd3}],
|
|
m_ram[{addrb, 3'd2}],
|
|
m_ram[{addrb, 3'd1}],
|
|
m_ram[{addrb, 3'd0}]};
|
|
end
|
|
end
|
|
endgenerate
|
|
|
|
endmodule
|
|
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|