pluto_hdl_adi/library/xilinx/axi_dacfifo/axi_dacfifo_dac.v

380 lines
14 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2016(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_dacfifo_dac (
axi_clk,
axi_dvalid,
axi_ddata,
axi_dready,
axi_dlast,
axi_xfer_req,
dma_last_beats,
dac_clk,
dac_rst,
dac_valid,
dac_data,
dac_xfer_out,
dac_dunf
);
// parameters
parameter AXI_DATA_WIDTH = 512;
parameter AXI_LENGTH = 15;
parameter DAC_DATA_WIDTH = 64;
localparam MEM_RATIO = AXI_DATA_WIDTH/DAC_DATA_WIDTH;
localparam DAC_ADDRESS_WIDTH = 10;
localparam AXI_ADDRESS_WIDTH = (MEM_RATIO == 1) ? DAC_ADDRESS_WIDTH :
(MEM_RATIO == 2) ? (DAC_ADDRESS_WIDTH - 1) :
(MEM_RATIO == 4) ? (DAC_ADDRESS_WIDTH - 2) :
(DAC_ADDRESS_WIDTH - 3);
// BUF_THRESHOLD_LO will make sure that there are always at least two burst in the memmory
localparam AXI_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1);
localparam AXI_BUF_THRESHOLD_HI = {(AXI_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1);
localparam DAC_BUF_THRESHOLD_LO = 3 * (AXI_LENGTH+1) * MEM_RATIO;
localparam DAC_BUF_THRESHOLD_HI = {(DAC_ADDRESS_WIDTH){1'b1}} - (AXI_LENGTH+1) * MEM_RATIO;
localparam DAC_ARINCR = (AXI_LENGTH+1) * MEM_RATIO;
// dma write
input axi_clk;
input axi_dvalid;
input [(AXI_DATA_WIDTH-1):0] axi_ddata;
output axi_dready;
input axi_dlast;
input axi_xfer_req;
input [ 3:0] dma_last_beats;
// dac read
input dac_clk;
input dac_rst;
input dac_valid;
output [(DAC_DATA_WIDTH-1):0] dac_data;
output dac_xfer_out;
output dac_dunf;
// internal registers
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_waddr = 'd0;
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_laddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] axi_mem_raddr_m2 = 'd0;
reg [(AXI_ADDRESS_WIDTH-1):0] axi_mem_addr_diff = 'd0;
reg axi_dready = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_raddr_g = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_waddr_m2 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m1 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_laddr_m2 = 'd0;
reg [(DAC_ADDRESS_WIDTH-1):0] dac_mem_addr_diff = 'd0;
reg dac_mem_init = 1'b0;
reg dac_mem_init_d = 1'b0;
reg dac_mem_enable = 1'b0;
reg [ 2:0] dac_xfer_req_m = 3'b0;
reg dac_xfer_init = 1'b0;
reg [ 3:0] dac_last_beats = 4'b0;
reg [ 3:0] dac_last_beats_m = 4'b0;
reg dac_dunf = 1'b0;
reg [ 3:0] dac_beat_cnt = 4'b0;
reg dac_dlast = 1'b0;
reg dac_dlast_m1 = 1'b0;
reg dac_dlast_m2 = 1'b0;
reg dac_dlast_inmem = 1'b0;
// internal signals
wire [AXI_ADDRESS_WIDTH:0] axi_mem_addr_diff_s;
wire [(AXI_ADDRESS_WIDTH-1):0] axi_mem_raddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_waddr_s;
wire [(DAC_ADDRESS_WIDTH-1):0] axi_mem_laddr_s;
wire [DAC_ADDRESS_WIDTH:0] dac_mem_addr_diff_s;
wire dac_mem_valid_s;
wire dac_xfer_init_s;
wire dac_last_axi_beats_s;
// binary to grey conversion
function [9:0] b2g;
input [9:0] b;
reg [9:0] g;
begin
g[9] = b[9];
g[8] = b[9] ^ b[8];
g[7] = b[8] ^ b[7];
g[6] = b[7] ^ b[6];
g[5] = b[6] ^ b[5];
g[4] = b[5] ^ b[4];
g[3] = b[4] ^ b[3];
g[2] = b[3] ^ b[2];
g[1] = b[2] ^ b[1];
g[0] = b[1] ^ b[0];
b2g = g;
end
endfunction
// grey to binary conversion
function [9:0] g2b;
input [9:0] g;
reg [9:0] b;
begin
b[9] = g[9];
b[8] = b[9] ^ g[8];
b[7] = b[8] ^ g[7];
b[6] = b[7] ^ g[6];
b[5] = b[6] ^ g[5];
b[4] = b[5] ^ g[4];
b[3] = b[4] ^ g[3];
b[2] = b[3] ^ g[2];
b[1] = b[2] ^ g[1];
b[0] = b[1] ^ g[0];
g2b = b;
end
endfunction
// write interface
always @(posedge axi_clk) begin
if (axi_xfer_req == 1'b0) begin
axi_mem_waddr <= 'd0;
axi_mem_waddr_g <= 'd0;
axi_mem_laddr <= {AXI_ADDRESS_WIDTH{1'b1}};
end else begin
if (axi_dvalid == 1'b1) begin
axi_mem_waddr <= axi_mem_waddr + 1'b1;
axi_mem_laddr <= (axi_dlast == 1'b1) ? axi_mem_waddr : axi_mem_laddr;
end
axi_mem_waddr_g <= b2g(axi_mem_waddr_s);
axi_mem_laddr_g <= b2g(axi_mem_laddr_s);
end
end
// scale the axi_mem_* addresses
assign axi_mem_raddr_s = (MEM_RATIO == 1) ? axi_mem_raddr :
(MEM_RATIO == 2) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):1] :
(MEM_RATIO == 4) ? axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):2] :
axi_mem_raddr[(DAC_ADDRESS_WIDTH-1):3];
assign axi_mem_waddr_s = (MEM_RATIO == 1) ? axi_mem_waddr :
(MEM_RATIO == 2) ? {axi_mem_waddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_waddr, 2'b0} :
{axi_mem_waddr, 3'b0};
assign axi_mem_laddr_s = (MEM_RATIO == 1) ? axi_mem_laddr :
(MEM_RATIO == 2) ? {axi_mem_laddr, 1'b0} :
(MEM_RATIO == 4) ? {axi_mem_laddr, 2'b0} :
{axi_mem_laddr, 3'b0};
// incomming data flow control
assign axi_mem_addr_diff_s = {1'b1, axi_mem_waddr} - axi_mem_raddr_s;
always @(posedge axi_clk) begin
if (axi_xfer_req == 1'b0) begin
axi_mem_addr_diff <= 'd0;
axi_mem_raddr <= 'd0;
axi_mem_raddr_m1 <= 'd0;
axi_mem_raddr_m2 <= 'd0;
axi_dready <= 'd0;
end else begin
axi_mem_raddr_m1 <= dac_mem_raddr_g;
axi_mem_raddr_m2 <= axi_mem_raddr_m1;
axi_mem_raddr <= g2b(axi_mem_raddr_m2);
axi_mem_addr_diff <= axi_mem_addr_diff_s[AXI_ADDRESS_WIDTH-1:0];
if (axi_mem_addr_diff >= AXI_BUF_THRESHOLD_HI) begin
axi_dready <= 1'b0;
end else if (axi_mem_addr_diff <= AXI_BUF_THRESHOLD_LO) begin
axi_dready <= 1'b1;
end
end
end
// CDC for xfer_req signal
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_xfer_req_m <= 3'b0;
end else begin
dac_xfer_req_m <= {dac_xfer_req_m[1:0], axi_xfer_req};
end
end
assign dac_xfer_out = dac_xfer_req_m[2];
assign dac_xfer_init_s = ~dac_xfer_req_m[2] & dac_xfer_req_m[1];
// read interface
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_init <= 1'b0;
dac_mem_init_d <= 1'b0;
dac_mem_enable <= 1'b0;
end else begin
if (dac_xfer_init == 1'b1) begin
dac_mem_init <= 1'b1;
end
if ((dac_mem_init == 1'b1) && (dac_mem_addr_diff > DAC_BUF_THRESHOLD_LO)) begin
dac_mem_init <= 1'b0;
end
dac_mem_init_d <= dac_mem_init;
// memory is ready when the initial fill up is done
dac_mem_enable <= (dac_mem_init_d & ~dac_mem_init) ? 1'b1 : dac_mem_enable;
end
dac_xfer_init <= dac_xfer_init_s;
end
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_waddr <= 'b0;
dac_mem_waddr_m1 <= 'b0;
dac_mem_waddr_m2 <= 'b0;
dac_mem_laddr <= 'b0;
dac_mem_laddr_m1 <= 'b0;
dac_mem_laddr_m2 <= 'b0;
dac_dlast <= 1'b0;
dac_dlast_m1 <= 1'b0;
dac_dlast_m2 <= 1'b0;
end else begin
dac_mem_waddr_m1 <= axi_mem_waddr_g;
dac_mem_waddr_m2 <= dac_mem_waddr_m1;
dac_mem_waddr <= g2b(dac_mem_waddr_m2);
dac_mem_laddr_m1 <= axi_mem_laddr_g;
dac_mem_laddr_m2 <= dac_mem_laddr_m1;
dac_mem_laddr <= g2b(dac_mem_laddr_m2);
dac_dlast_m1 <= axi_dlast;
dac_dlast_m2 <= dac_dlast_m1;
dac_dlast <= dac_dlast_m2;
end
end
assign dac_mem_addr_diff_s = {1'b1, dac_mem_waddr} - dac_mem_raddr;
assign dac_mem_valid_s = (dac_mem_enable) ? dac_valid : 1'b0;
// CDC for the dma_last_beats
always @(posedge dac_clk) begin
if (dac_rst == 1'b1) begin
dac_last_beats <= 32'b0;
dac_last_beats_m <= 32'b0;
end else begin
dac_last_beats_m <= dma_last_beats;
dac_last_beats <= dac_last_beats_m;
end
end
// If the MEM_RATIO is grater than one, it can happen that not all the DAC beats from
// an AXI beat are valid. In this case the invalid data is dropped.
// The axi_dlast indicates the last AXI beat. The valid number of DAC beats on the last AXI beat
// commes from the AXI write module. (axi_dacfifo_wr.v)
assign dac_last_axi_beats_s = ((dac_dlast_inmem == 1'b1) && (dac_mem_raddr >= dac_mem_laddr) && (dac_mem_raddr < dac_mem_laddr + MEM_RATIO)) ? 1'b1 : 1'b0;
always @(posedge dac_clk) begin
if (dac_xfer_out == 1'b0) begin
dac_mem_raddr <= 'd0;
dac_beat_cnt <= 'd0;
dac_dlast_inmem <= 1'b0;
end else begin
if (dac_dlast == 1'b1) begin
dac_dlast_inmem <= 1'b1;
end else if (dac_mem_raddr == dac_mem_laddr + MEM_RATIO) begin
dac_dlast_inmem <= 1'b0;
end
if (dac_mem_valid_s == 1'b1) begin
dac_beat_cnt <= ((dac_beat_cnt >= MEM_RATIO-1) ||
((dac_last_beats > 1'b1) && (dac_last_axi_beats_s > 1'b0) && (dac_beat_cnt == dac_last_beats-1))) ? 0 : dac_beat_cnt + 1;
dac_mem_raddr <= ((dac_last_axi_beats_s) && (dac_beat_cnt == dac_last_beats-1)) ? (dac_mem_laddr + MEM_RATIO) : dac_mem_raddr + 1'b1;
end
dac_mem_raddr_g <= b2g(dac_mem_raddr);
end
end
// underflow generation, there is no overflow
always @(posedge dac_clk) begin
if(dac_xfer_out == 1'b0) begin
dac_mem_addr_diff <= 'b0;
dac_dunf <= 1'b0;
end else begin
dac_mem_addr_diff <= dac_mem_addr_diff_s[DAC_ADDRESS_WIDTH-1:0];
dac_dunf <= (dac_mem_addr_diff == 1'b0) ? 1'b1 : 1'b0;
end
end
// instantiations
ad_mem_asym #(
.A_ADDRESS_WIDTH (AXI_ADDRESS_WIDTH),
.A_DATA_WIDTH (AXI_DATA_WIDTH),
.B_ADDRESS_WIDTH (DAC_ADDRESS_WIDTH),
.B_DATA_WIDTH (DAC_DATA_WIDTH))
i_mem_asym (
.clka (axi_clk),
.wea (axi_dvalid),
.addra (axi_mem_waddr),
.dina (axi_ddata),
.clkb (dac_clk),
.addrb (dac_mem_raddr),
.doutb (dac_data));
endmodule
// ***************************************************************************
// ***************************************************************************