pluto_hdl_adi/library/util_adcfifo/util_adcfifo.v

254 lines
8.2 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright (C) 2015-2023 Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module util_adcfifo #(
parameter FPGA_TECHNOLOGY = 0,
parameter ADC_DATA_WIDTH = 256,
parameter DMA_DATA_WIDTH = 64,
parameter DMA_READY_ENABLE = 1,
parameter DMA_ADDRESS_WIDTH = 10
) (
// fifo interface
input adc_rst,
input adc_clk,
input adc_wr,
input [ADC_DATA_WIDTH-1:0] adc_wdata,
output adc_wovf,
// dma interface
input dma_clk,
output dma_wr,
output [DMA_DATA_WIDTH-1:0] dma_wdata,
input dma_wready,
input dma_xfer_req,
output [ 3:0] dma_xfer_status
);
localparam DMA_MEM_RATIO = ADC_DATA_WIDTH/DMA_DATA_WIDTH;
localparam ADDRESS_PADDING_WIDTH = (DMA_MEM_RATIO == 1) ? 0 :
(DMA_MEM_RATIO == 2) ? 1 :
(DMA_MEM_RATIO == 4) ? 2 : 3;
localparam ADC_ADDRESS_WIDTH = DMA_ADDRESS_WIDTH - ADDRESS_PADDING_WIDTH;
localparam ADC_ADDR_LIMIT = (2**ADC_ADDRESS_WIDTH)-1;
localparam DMA_ADDR_LIMIT = (2**DMA_ADDRESS_WIDTH)-1;
// internal registers
reg [ 2:0] adc_xfer_req_m = 'd0;
reg adc_xfer_init = 'd0;
reg adc_xfer_enable = 'd0;
reg adc_wr_int = 'd0;
reg [ADC_DATA_WIDTH-1:0] adc_wdata_int = 'd0;
reg [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int = 'd0;
reg adc_capture_arm = 1'b0;
reg dma_rd = 'd0;
reg dma_rd_d = 'd0;
reg [DMA_DATA_WIDTH-1:0] dma_rdata_d = 'd0;
reg [DMA_ADDRESS_WIDTH:0] dma_raddr = 'd0;
reg [DMA_ADDRESS_WIDTH-1:0] dma_waddr_int = 'd0;
reg dma_endof_read = 'd0;
// internal signals
wire adc_rst_s;
wire dma_wready_s;
wire [DMA_DATA_WIDTH-1:0] dma_rdata_s;
wire dma_read_rst_s;
wire dma_wr_int_s;
wire [ADC_ADDRESS_WIDTH-1:0] dma_waddr_int_s;
wire adc_end_of_capture_s;
wire [ADC_ADDRESS_WIDTH-1:0] adc_waddr_int_s;
// write interface
assign adc_wovf = 1'd0;
// synchronize the adc_rst to the adc_clk clock domain
ad_rst i_adc_rst_sync (
.rst_async (adc_rst),
.clk (adc_clk),
.rstn (),
.rst (adc_rst_s));
// optional capture synchronization
always @(posedge adc_clk) begin
if (adc_rst_s == 1'b1) begin
adc_xfer_req_m <= 'd0;
end else begin
adc_xfer_req_m <= {adc_xfer_req_m[1:0], dma_xfer_req};
end
end
always @(posedge adc_clk) begin
if (adc_rst_s == 1'b1) begin
adc_xfer_init <= 'd0;
end else begin
adc_xfer_init <= adc_xfer_req_m[1] & ~adc_xfer_req_m[2];
end
end
// a de-asserted xfer_req will reset the FIFO
assign dma_wr = dma_wr_int_s & dma_xfer_req;
assign adc_end_of_capture_s = ((adc_waddr_int_s == ADC_ADDR_LIMIT) || (adc_xfer_req_m[2] == 1'b0)) &&
(adc_wr_int == 1'b1);
always @(posedge adc_clk) begin
if (adc_rst_s == 1'b1) begin
adc_xfer_enable <= 'd0;
end else begin
if (adc_xfer_init == 1'b1) begin
adc_xfer_enable <= 1'b1;
end else if (adc_end_of_capture_s == 1'b1) begin
adc_xfer_enable <= 1'b0;
end
end
end
assign adc_waddr_int_s = (adc_waddr_int == ADC_ADDR_LIMIT) ? adc_waddr_int : adc_waddr_int + 1'b1;
always @(posedge adc_clk) begin
if (adc_xfer_req_m[2] == 1'b0) begin
adc_wr_int <= 'd0;
adc_wdata_int <= 'd0;
adc_waddr_int <= 'd0;
end else begin
adc_wr_int <= adc_wr & adc_xfer_enable;
adc_wdata_int <= adc_wdata;
if (adc_wr_int == 1'b1) begin
adc_waddr_int <= adc_waddr_int_s;
end
end
end
// read interface
assign dma_xfer_status = 4'd0;
// write address synchronization
sync_gray #(
.DATA_WIDTH (ADC_ADDRESS_WIDTH),
.ASYNC_CLK (1)
) i_dma_waddr_sync (
.in_clk (adc_clk),
.in_resetn (1'b1),
.in_count (adc_waddr_int),
.out_resetn (1'b1),
.out_clk (dma_clk),
.out_count (dma_waddr_int_s));
always @(posedge dma_clk) begin
if (dma_read_rst_s == 1'b1) begin
dma_waddr_int <= 'd0;
end else begin
dma_waddr_int <= {dma_waddr_int_s,{ADDRESS_PADDING_WIDTH{1'b0}}};
end
end
assign dma_read_rst_s = ~dma_xfer_req;
assign dma_wready_s = (DMA_READY_ENABLE == 0) ? 1'b1 : dma_wready;
assign dma_rd_s = ((dma_raddr < {1'b0, dma_waddr_int}) || &dma_waddr_int) & dma_wready_s;
always @(posedge dma_clk) begin
if (dma_read_rst_s == 1'b1) begin
dma_rd <= 'd0;
dma_rd_d <= 'd0;
dma_rdata_d <= 'd0;
dma_raddr <= 'd0;
dma_endof_read <= 'd0;
end else begin
if (dma_waddr_int != 'd0) begin
dma_rd <= dma_rd_s;
if (dma_rd_s == 1'b1) begin
dma_raddr <= dma_raddr + 1'b1;
end
end
dma_rd_d <= dma_rd;
dma_rdata_d <= dma_rdata_s;
end
end
// instantiations
generate
if (FPGA_TECHNOLOGY == 1) begin
mem_asym i_mem_asym (
.mem_i_wrclock_clk (adc_clk),
.mem_i_wren_wren (adc_wr_int),
.mem_i_wraddress_wraddress (adc_waddr_int),
.mem_i_datain_datain (adc_wdata_int),
.mem_i_rdclock_clk (dma_clk),
.mem_i_rdaddress_rdaddress (dma_raddr[DMA_ADDRESS_WIDTH-1:0]),
.mem_o_dataout_dataout (dma_rdata_s));
end else begin
ad_mem_asym #(
.A_ADDRESS_WIDTH (ADC_ADDRESS_WIDTH),
.A_DATA_WIDTH (ADC_DATA_WIDTH),
.B_ADDRESS_WIDTH (DMA_ADDRESS_WIDTH),
.B_DATA_WIDTH (DMA_DATA_WIDTH)
) i_mem_asym (
.clka (adc_clk),
.wea (adc_wr_int),
.addra (adc_waddr_int),
.dina (adc_wdata_int),
.clkb (dma_clk),
.reb (1'b1),
.addrb (dma_raddr[DMA_ADDRESS_WIDTH-1:0]),
.doutb (dma_rdata_s));
end
endgenerate
ad_axis_inf_rx #(
.DATA_WIDTH(DMA_DATA_WIDTH)
) i_axis_inf (
.clk (dma_clk),
.rst (dma_read_rst_s),
.valid (dma_rd_d),
.last (1'd0),
.data (dma_rdata_d),
.inf_valid (dma_wr_int_s),
.inf_last (),
.inf_data (dma_wdata),
.inf_ready (dma_wready));
endmodule