pluto_hdl_adi/library/axi_dmac/request_arb.v

1076 lines
28 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2013(c) Analog Devices, Inc.
// Author: Lars-Peter Clausen <lars@metafoo.de>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
module dmac_request_arb (
input req_aclk,
input req_aresetn,
input req_valid,
output req_ready,
input [31:C_BYTES_PER_BEAT_WIDTH_DEST] req_dest_address,
input [31:C_BYTES_PER_BEAT_WIDTH_SRC] req_src_address,
input [C_DMA_LENGTH_WIDTH-1:0] req_length,
input req_sync_transfer_start,
output reg eot,
input enable,
input pause,
// Master AXI interface
input m_dest_axi_aclk,
input m_dest_axi_aresetn,
input m_src_axi_aclk,
input m_src_axi_aresetn,
// Write address
output [31:0] m_axi_awaddr,
output [ 7:0] m_axi_awlen,
output [ 2:0] m_axi_awsize,
output [ 1:0] m_axi_awburst,
output [ 2:0] m_axi_awprot,
output [ 3:0] m_axi_awcache,
output m_axi_awvalid,
input m_axi_awready,
// Write data
output [C_DMA_DATA_WIDTH_DEST-1:0] m_axi_wdata,
output [(C_DMA_DATA_WIDTH_DEST/8)-1:0] m_axi_wstrb,
input m_axi_wready,
output m_axi_wvalid,
output m_axi_wlast,
// Write response
input m_axi_bvalid,
input [ 1:0] m_axi_bresp,
output m_axi_bready,
// Read address
input m_axi_arready,
output m_axi_arvalid,
output [31:0] m_axi_araddr,
output [ 7:0] m_axi_arlen,
output [ 2:0] m_axi_arsize,
output [ 1:0] m_axi_arburst,
output [ 2:0] m_axi_arprot,
output [ 3:0] m_axi_arcache,
// Read data and response
input [C_DMA_DATA_WIDTH_SRC-1:0] m_axi_rdata,
output m_axi_rready,
input m_axi_rvalid,
input [ 1:0] m_axi_rresp,
// Slave streaming AXI interface
input s_axis_aclk,
output s_axis_ready,
input s_axis_valid,
input [C_DMA_DATA_WIDTH_SRC-1:0] s_axis_data,
input [0:0] s_axis_user,
output s_axis_xfer_req,
// Master streaming AXI interface
input m_axis_aclk,
input m_axis_ready,
output m_axis_valid,
output [C_DMA_DATA_WIDTH_DEST-1:0] m_axis_data,
output m_axis_xfer_req,
// Input FIFO interface
input fifo_wr_clk,
input fifo_wr_en,
input [C_DMA_DATA_WIDTH_SRC-1:0] fifo_wr_din,
output fifo_wr_overflow,
input fifo_wr_sync,
output fifo_wr_xfer_req,
// Input FIFO interface
input fifo_rd_clk,
input fifo_rd_en,
output fifo_rd_valid,
output [C_DMA_DATA_WIDTH_DEST-1:0] fifo_rd_dout,
output fifo_rd_underflow,
output fifo_rd_xfer_req,
output [C_ID_WIDTH-1:0] dbg_dest_request_id,
output [C_ID_WIDTH-1:0] dbg_dest_address_id,
output [C_ID_WIDTH-1:0] dbg_dest_data_id,
output [C_ID_WIDTH-1:0] dbg_dest_response_id,
output [C_ID_WIDTH-1:0] dbg_src_request_id,
output [C_ID_WIDTH-1:0] dbg_src_address_id,
output [C_ID_WIDTH-1:0] dbg_src_data_id,
output [C_ID_WIDTH-1:0] dbg_src_response_id,
output [7:0] dbg_status
);
parameter C_DMA_DATA_WIDTH_SRC = 64;
parameter C_DMA_DATA_WIDTH_DEST = 64;
parameter C_DMA_LENGTH_WIDTH = 24;
parameter C_BYTES_PER_BEAT_WIDTH_DEST = $clog2(C_DMA_DATA_WIDTH_DEST/8);
parameter C_BYTES_PER_BEAT_WIDTH_SRC = $clog2(C_DMA_DATA_WIDTH_SRC/8);
parameter C_DMA_TYPE_DEST = DMA_TYPE_MM_AXI;
parameter C_DMA_TYPE_SRC = DMA_TYPE_FIFO;
parameter C_CLKS_ASYNC_REQ_SRC = 1;
parameter C_CLKS_ASYNC_SRC_DEST = 1;
parameter C_CLKS_ASYNC_DEST_REQ = 1;
parameter C_AXI_SLICE_DEST = 0;
parameter C_AXI_SLICE_SRC = 0;
parameter C_MAX_BYTES_PER_BURST = 128;
parameter C_FIFO_SIZE = 4;
parameter C_ID_WIDTH = $clog2(C_FIFO_SIZE * 2);
localparam DMA_TYPE_MM_AXI = 0;
localparam DMA_TYPE_STREAM_AXI = 1;
localparam DMA_TYPE_FIFO = 2;
localparam DMA_ADDR_WIDTH_DEST = 32 - C_BYTES_PER_BEAT_WIDTH_DEST;
localparam DMA_ADDR_WIDTH_SRC = 32 - C_BYTES_PER_BEAT_WIDTH_SRC;
localparam DMA_DATA_WIDTH = C_DMA_DATA_WIDTH_SRC < C_DMA_DATA_WIDTH_DEST ?
C_DMA_DATA_WIDTH_DEST : C_DMA_DATA_WIDTH_SRC;
// Bytes per burst is the same for both dest and src, but bytes per beat may
// differ, so beats per burst may also differ
parameter BYTES_PER_BURST_WIDTH = $clog2(C_MAX_BYTES_PER_BURST);
localparam BEATS_PER_BURST_WIDTH_SRC = BYTES_PER_BURST_WIDTH - C_BYTES_PER_BEAT_WIDTH_SRC;
localparam BEATS_PER_BURST_WIDTH_DEST = BYTES_PER_BURST_WIDTH - C_BYTES_PER_BEAT_WIDTH_DEST;
localparam BURSTS_PER_TRANSFER_WIDTH = C_DMA_LENGTH_WIDTH - BYTES_PER_BURST_WIDTH;
reg [0:2**C_ID_WIDTH-1] eot_mem_src;
reg [0:2**C_ID_WIDTH-1] eot_mem_dest;
wire request_eot;
wire [C_ID_WIDTH-1:0] request_id;
wire [C_ID_WIDTH-1:0] response_id;
wire enabled_src;
wire enabled_dest;
wire sync_id;
wire sync_id_ret_dest;
wire sync_id_ret_src;
wire dest_enable;
wire dest_enabled;
wire dest_pause;
wire dest_sync_id;
wire dest_sync_id_ret;
wire src_enable;
wire src_enabled;
wire src_pause;
wire src_sync_id;
wire src_sync_id_ret;
wire req_dest_valid;
wire req_dest_ready;
wire req_dest_empty;
wire req_src_valid;
wire req_src_ready;
wire req_src_empty;
wire dest_clk;
wire dest_resetn;
wire dest_req_valid;
wire dest_req_ready;
wire [DMA_ADDR_WIDTH_DEST-1:0] dest_req_address;
wire [BEATS_PER_BURST_WIDTH_DEST-1:0] dest_req_last_burst_length;
wire [C_BYTES_PER_BEAT_WIDTH_DEST-1:0] dest_req_last_beat_bytes;
wire dest_response_valid;
wire dest_response_ready;
wire dest_response_empty;
wire [1:0] dest_response_resp;
wire dest_response_resp_eot;
wire [C_ID_WIDTH-1:0] dest_request_id;
wire [C_ID_WIDTH-1:0] dest_response_id;
wire dest_valid;
wire dest_ready;
wire [C_DMA_DATA_WIDTH_DEST-1:0] dest_data;
wire dest_fifo_repacked_valid;
wire dest_fifo_repacked_ready;
wire [C_DMA_DATA_WIDTH_DEST-1:0] dest_fifo_repacked_data;
wire dest_fifo_valid;
wire dest_fifo_ready;
wire [DMA_DATA_WIDTH-1:0] dest_fifo_data;
wire src_clk;
wire src_resetn;
wire src_req_valid;
wire src_req_ready;
wire [DMA_ADDR_WIDTH_SRC-1:0] src_req_address;
wire [BEATS_PER_BURST_WIDTH_SRC-1:0] src_req_last_burst_length;
wire src_req_sync_transfer_start;
wire src_response_valid;
wire src_response_ready;
wire src_response_empty;
wire [1:0] src_response_resp;
wire [C_ID_WIDTH-1:0] src_request_id;
wire [C_ID_WIDTH-1:0] src_response_id;
wire src_valid;
wire src_ready;
wire [C_DMA_DATA_WIDTH_SRC-1:0] src_data;
wire src_fifo_valid;
wire src_fifo_ready;
wire [C_DMA_DATA_WIDTH_SRC-1:0] src_fifo_data;
wire src_fifo_repacked_valid;
wire src_fifo_repacked_ready;
wire [DMA_DATA_WIDTH-1:0] src_fifo_repacked_data;
wire src_fifo_empty;
wire fifo_empty;
wire response_dest_valid;
wire response_dest_ready = 1'b1;
wire [1:0] response_dest_resp;
wire response_dest_resp_eot;
wire response_src_valid;
wire response_src_ready = 1'b1;
wire [1:0] response_src_resp;
assign dbg_dest_request_id = dest_request_id;
assign dbg_dest_response_id = dest_response_id;
assign dbg_src_request_id = src_request_id;
assign dbg_src_response_id = src_response_id;
assign sync_id = ~enabled_dest && ~enabled_src && request_id != response_id;
reg enabled;
reg do_enable;
// Enable src and dest if we are in sync
always @(posedge req_aclk)
begin
if (req_aresetn == 1'b0) begin
do_enable <= 1'b0;
end else begin
if (enable) begin
// First make sure we are fully disabled
if (~sync_id_ret_dest && ~sync_id_ret_src &&
response_id == request_id && ~enabled_dest && ~enabled_src &&
req_dest_empty && req_src_empty && fifo_empty)
do_enable <= 1'b1;
end else begin
do_enable <= 1'b0;
end
end
end
// Flag enabled once both src and dest are enabled
always @(posedge req_aclk)
begin
if (req_aresetn == 1'b0) begin
enabled <= 1'b0;
end else begin
if (do_enable == 1'b0)
enabled <= 1'b0;
else if (enabled_dest && enabled_src)
enabled <= 1'b1;
end
end
assign dbg_status = {do_enable, enabled, enabled_dest, enabled_src, fifo_empty,
sync_id, sync_id_ret_dest, sync_id_ret_src};
always @(posedge req_aclk)
begin
eot_mem_src[request_id] <= request_eot;
eot_mem_dest[request_id] <= request_eot;
end
always @(posedge req_aclk)
begin
if (req_aresetn == 1'b0) begin
eot <= 1'b0;
end else begin
eot <= response_dest_valid & response_dest_ready & response_dest_resp_eot;
end
end
// Generate reset for reset-less interfaces
generate if (C_DMA_TYPE_SRC == DMA_TYPE_STREAM_AXI || C_DMA_TYPE_SRC == DMA_TYPE_FIFO) begin
reg [2:0] src_resetn_shift = 3'b0;
assign src_resetn = src_resetn_shift[2];
always @(negedge req_aresetn or posedge src_clk) begin
if (~req_aresetn)
src_resetn_shift <= 3'b000;
else
src_resetn_shift <= {src_resetn_shift[1:0], 1'b1};
end
end endgenerate
generate if (C_DMA_TYPE_DEST == DMA_TYPE_STREAM_AXI || C_DMA_TYPE_DEST == DMA_TYPE_FIFO) begin
reg [2:0] dest_resetn_shift = 3'b0;
assign dest_resetn = dest_resetn_shift[2];
always @(negedge req_aresetn or posedge dest_clk) begin
if (~req_aresetn)
dest_resetn_shift <= 3'b000;
else
dest_resetn_shift <= {dest_resetn_shift[1:0], 1'b1};
end
end endgenerate
generate if (C_DMA_TYPE_DEST == DMA_TYPE_MM_AXI) begin
assign dest_clk = m_dest_axi_aclk;
assign dest_resetn = m_dest_axi_aresetn;
wire [C_ID_WIDTH-1:0] dest_data_id;
wire [C_ID_WIDTH-1:0] dest_address_id;
wire dest_address_eot = eot_mem_dest[dest_address_id];
wire dest_data_eot = eot_mem_dest[dest_data_id];
wire dest_response_eot = eot_mem_dest[dest_response_id];
assign dbg_dest_address_id = dest_address_id;
assign dbg_dest_data_id = dest_data_id;
dmac_dest_mm_axi #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_DMA_DATA_WIDTH(C_DMA_DATA_WIDTH_DEST),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST),
.C_BYTES_PER_BEAT_WIDTH(C_BYTES_PER_BEAT_WIDTH_DEST)
) i_dest_dma_mm (
.m_axi_aclk(m_dest_axi_aclk),
.m_axi_aresetn(m_dest_axi_aresetn),
.enable(dest_enable),
.enabled(dest_enabled),
.pause(dest_pause),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.req_address(dest_req_address),
.req_last_burst_length(dest_req_last_burst_length),
.req_last_beat_bytes(dest_req_last_beat_bytes),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.request_id(dest_request_id),
.response_id(dest_response_id),
.sync_id(dest_sync_id),
.sync_id_ret(dest_sync_id_ret),
.data_id(dest_data_id),
.address_id(dest_address_id),
.address_eot(dest_address_eot),
.data_eot(dest_data_eot),
.response_eot(dest_response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.m_axi_awready(m_axi_awready),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awprot(m_axi_awprot),
.m_axi_awcache(m_axi_awcache),
.m_axi_wready(m_axi_wready),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bresp(m_axi_bresp),
.m_axi_bready(m_axi_bready)
);
end else begin
assign m_axi_awvalid = 1'b0;
assign m_axi_awaddr = 'h00;
assign m_axi_awlen = 'h00;
assign m_axi_awsize = 'h00;
assign m_axi_awburst = 'h00;
assign m_axi_awprot = 'h00;
assign m_axi_awcache = 'h00;
assign m_axi_wvalid = 1'b0;
assign m_axi_wdata = 'h00;
assign m_axi_wstrb = 'h00;
assign m_axi_wlast = 1'b0;
assign m_axi_bready = 1'b0;
end
if (C_DMA_TYPE_DEST == DMA_TYPE_STREAM_AXI) begin
assign dest_clk = m_axis_aclk;
wire [C_ID_WIDTH-1:0] data_id;
wire data_eot = eot_mem_dest[data_id];
wire response_eot = eot_mem_dest[dest_response_id];
assign dbg_dest_address_id = 'h00;
assign dbg_dest_data_id = data_id;
dmac_dest_axi_stream #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_S_AXIS_DATA_WIDTH(C_DMA_DATA_WIDTH_DEST),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST)
) i_dest_dma_stream (
.s_axis_aclk(m_axis_aclk),
.s_axis_aresetn(dest_resetn),
.enable(dest_enable),
.enabled(dest_enabled),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.req_last_burst_length(dest_req_last_burst_length),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.request_id(dest_request_id),
.response_id(dest_response_id),
.data_id(data_id),
.sync_id(dest_sync_id),
.sync_id_ret(dest_sync_id_ret),
.xfer_req(m_axis_xfer_req),
.data_eot(data_eot),
.response_eot(response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.m_axis_valid(m_axis_valid),
.m_axis_ready(m_axis_ready),
.m_axis_data(m_axis_data)
);
end else begin
assign m_axis_valid = 1'b0;
assign m_axis_data = 'h00;
end
if (C_DMA_TYPE_DEST == DMA_TYPE_FIFO) begin
assign dest_clk = fifo_rd_clk;
wire [C_ID_WIDTH-1:0] data_id;
wire data_eot = eot_mem_dest[data_id];
wire response_eot = eot_mem_dest[dest_response_id];
assign dbg_dest_address_id = 'h00;
assign dbg_dest_data_id = data_id;
dmac_dest_fifo_inf #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_DATA_WIDTH(C_DMA_DATA_WIDTH_DEST),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST)
) i_dest_dma_fifo (
.clk(fifo_rd_clk),
.resetn(dest_resetn),
.enable(dest_enable),
.enabled(dest_enabled),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.req_last_burst_length(dest_req_last_burst_length),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.request_id(dest_request_id),
.response_id(dest_response_id),
.data_id(data_id),
.sync_id(dest_sync_id),
.sync_id_ret(dest_sync_id_ret),
.data_eot(data_eot),
.response_eot(response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.en(fifo_rd_en),
.valid(fifo_rd_valid),
.dout(fifo_rd_dout),
.underflow(fifo_rd_underflow),
.xfer_req(fifo_rd_xfer_req)
);
end else begin
assign fifo_rd_valid = 1'b0;
assign fifo_rd_dout = 'h0;
assign fifo_rd_underflow = 1'b0;
end endgenerate
generate if (C_DMA_TYPE_SRC == DMA_TYPE_MM_AXI) begin
assign src_clk = m_src_axi_aclk;
assign src_resetn = m_src_axi_aresetn;
wire [C_ID_WIDTH-1:0] src_data_id;
wire [C_ID_WIDTH-1:0] src_address_id;
wire src_address_eot = eot_mem_src[src_address_id];
wire src_data_eot = eot_mem_src[src_data_id];
assign dbg_src_address_id = src_address_id;
assign dbg_src_data_id = src_data_id;
dmac_src_mm_axi #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_DMA_DATA_WIDTH(C_DMA_DATA_WIDTH_SRC),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC),
.C_BYTES_PER_BEAT_WIDTH(C_BYTES_PER_BEAT_WIDTH_SRC)
) i_src_dma_mm (
.m_axi_aclk(m_src_axi_aclk),
.m_axi_aresetn(m_src_axi_aresetn),
.pause(pause),
.enable(src_enable),
.enabled(src_enabled),
.sync_id(src_sync_id),
.sync_id_ret(src_sync_id_ret),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_address(src_req_address),
.req_last_burst_length(src_req_last_burst_length),
.response_valid(src_response_valid),
.response_ready(src_response_ready),
.response_resp(src_response_resp),
.request_id(src_request_id),
.response_id(src_response_id),
.address_id(src_address_id),
.data_id(src_data_id),
.address_eot(src_address_eot),
.data_eot(src_data_eot),
.fifo_valid(src_valid),
.fifo_ready(src_ready),
.fifo_data(src_data),
.m_axi_arready(m_axi_arready),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arprot(m_axi_arprot),
.m_axi_arcache(m_axi_arcache),
.m_axi_rready(m_axi_rready),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rresp(m_axi_rresp)
);
end else begin
assign m_axi_arvalid = 1'b0;
assign m_axi_araddr = 'h00;
assign m_axi_arlen = 'h00;
assign m_axi_arsize = 'h00;
assign m_axi_arburst = 'h00;
assign m_axi_arcache = 'h00;
assign m_axi_arprot = 'h00;
assign m_axi_rready = 1'b0;
end
if (C_DMA_TYPE_SRC == DMA_TYPE_STREAM_AXI) begin
assign src_clk = s_axis_aclk;
wire src_eot = eot_mem_src[src_response_id];
assign dbg_src_address_id = 'h00;
assign dbg_src_data_id = 'h00;
/* TODO */
assign src_response_valid = 1'b0;
assign src_response_resp = 2'b0;
dmac_src_axi_stream #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_S_AXIS_DATA_WIDTH(C_DMA_DATA_WIDTH_SRC),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC)
) i_src_dma_stream (
.s_axis_aclk(s_axis_aclk),
.s_axis_aresetn(src_resetn),
.enable(src_enable),
.enabled(src_enabled),
.sync_id(src_sync_id),
.sync_id_ret(src_sync_id_ret),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_last_burst_length(src_req_last_burst_length),
.req_sync_transfer_start(src_req_sync_transfer_start),
.request_id(src_request_id),
.response_id(src_response_id),
.eot(src_eot),
.fifo_valid(src_valid),
.fifo_ready(src_ready),
.fifo_data(src_data),
.s_axis_valid(s_axis_valid),
.s_axis_ready(s_axis_ready),
.s_axis_data(s_axis_data),
.s_axis_user(s_axis_user),
.s_axis_xfer_req(s_axis_xfer_req)
);
end else begin
assign s_axis_ready = 1'b0;
end
if (C_DMA_TYPE_SRC == DMA_TYPE_FIFO) begin
assign src_clk = fifo_wr_clk;
wire src_eot = eot_mem_src[src_response_id];
assign dbg_src_address_id = 'h00;
assign dbg_src_data_id = 'h00;
/* TODO */
assign src_response_valid = 1'b0;
assign src_response_resp = 2'b0;
dmac_src_fifo_inf #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_DATA_WIDTH(C_DMA_DATA_WIDTH_SRC),
.C_BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC)
) i_src_dma_fifo (
.clk(fifo_wr_clk),
.resetn(src_resetn),
.enable(src_enable),
.enabled(src_enabled),
.sync_id(src_sync_id),
.sync_id_ret(src_sync_id_ret),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_last_burst_length(src_req_last_burst_length),
.req_sync_transfer_start(src_req_sync_transfer_start),
.request_id(src_request_id),
.response_id(src_response_id),
.eot(src_eot),
.fifo_valid(src_valid),
.fifo_ready(src_ready),
.fifo_data(src_data),
.en(fifo_wr_en),
.din(fifo_wr_din),
.overflow(fifo_wr_overflow),
.sync(fifo_wr_sync),
.xfer_req(fifo_wr_xfer_req)
);
end else begin
assign fifo_wr_overflow = 1'b0;
assign fifo_wr_xfer_req = 1'b0;
end endgenerate
sync_bits #(
.NUM_BITS(C_ID_WIDTH),
.CLK_ASYNC(C_CLKS_ASYNC_REQ_SRC)
) i_sync_src_request_id (
.out_clk(src_clk),
.out_resetn(src_resetn),
.in(request_id),
.out(src_request_id)
);
sync_bits #(
.NUM_BITS(C_ID_WIDTH),
.CLK_ASYNC(C_CLKS_ASYNC_SRC_DEST)
) i_sync_dest_request_id (
.out_clk(dest_clk),
.out_resetn(dest_resetn),
.in(src_response_id),
.out(dest_request_id)
);
sync_bits #(
.NUM_BITS(C_ID_WIDTH),
.CLK_ASYNC(C_CLKS_ASYNC_DEST_REQ)
) i_sync_req_response_id (
.out_clk(req_aclk),
.out_resetn(req_aresetn),
.in(dest_response_id),
.out(response_id)
);
axi_register_slice #(
.DATA_WIDTH(C_DMA_DATA_WIDTH_SRC),
.FORWARD_REGISTERED(C_AXI_SLICE_SRC),
.BACKWARD_REGISTERED(C_AXI_SLICE_SRC)
) i_src_slice (
.clk(src_clk),
.resetn(src_resetn),
.s_axi_valid(src_valid),
.s_axi_ready(src_ready),
.s_axi_data(src_data),
.m_axi_valid(src_fifo_valid),
.m_axi_ready(src_fifo_ready),
.m_axi_data(src_fifo_data)
);
axi_repack #(
.C_S_DATA_WIDTH(C_DMA_DATA_WIDTH_SRC),
.C_M_DATA_WIDTH(DMA_DATA_WIDTH)
) i_src_repack (
.clk(src_clk),
.resetn(src_resetn),
.s_valid(src_fifo_valid),
.s_ready(src_fifo_ready),
.s_data(src_fifo_data),
.m_valid(src_fifo_repacked_valid),
.m_ready(src_fifo_repacked_ready),
.m_data(src_fifo_repacked_data)
);
axi_fifo #(
.C_DATA_WIDTH(DMA_DATA_WIDTH),
.C_ADDRESS_WIDTH($clog2(C_MAX_BYTES_PER_BURST / (DMA_DATA_WIDTH / 8) * C_FIFO_SIZE)),
.C_CLKS_ASYNC(C_CLKS_ASYNC_SRC_DEST)
) i_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(src_fifo_repacked_valid),
.s_axis_ready(src_fifo_repacked_ready),
.s_axis_data(src_fifo_repacked_data),
.s_axis_empty(src_fifo_empty),
.m_axis_aclk(dest_clk),
.m_axis_aresetn(dest_resetn),
.m_axis_valid(dest_fifo_valid),
.m_axis_ready(dest_fifo_ready),
.m_axis_data(dest_fifo_data)
);
axi_repack #(
.C_S_DATA_WIDTH(DMA_DATA_WIDTH),
.C_M_DATA_WIDTH(C_DMA_DATA_WIDTH_DEST)
) i_dest_repack (
.clk(dest_clk),
.resetn(dest_resetn),
.s_valid(dest_fifo_valid),
.s_ready(dest_fifo_ready),
.s_data(dest_fifo_data),
.m_valid(dest_fifo_repacked_valid),
.m_ready(dest_fifo_repacked_ready),
.m_data(dest_fifo_repacked_data)
);
wire _dest_valid;
wire _dest_ready;
wire [C_DMA_DATA_WIDTH_DEST-1:0] _dest_data;
axi_register_slice #(
.DATA_WIDTH(C_DMA_DATA_WIDTH_DEST),
.FORWARD_REGISTERED(C_AXI_SLICE_DEST)
) i_dest_slice2 (
.clk(dest_clk),
.resetn(dest_resetn),
.s_axi_valid(dest_fifo_repacked_valid),
.s_axi_ready(dest_fifo_repacked_ready),
.s_axi_data(dest_fifo_repacked_data),
.m_axi_valid(_dest_valid),
.m_axi_ready(_dest_ready),
.m_axi_data(_dest_data)
);
axi_register_slice #(
.DATA_WIDTH(C_DMA_DATA_WIDTH_DEST),
.FORWARD_REGISTERED(C_AXI_SLICE_DEST),
.BACKWARD_REGISTERED(C_AXI_SLICE_DEST)
) i_dest_slice (
.clk(dest_clk),
.resetn(dest_resetn),
.s_axi_valid(_dest_valid),
.s_axi_ready(_dest_ready),
.s_axi_data(_dest_data),
.m_axi_valid(dest_valid),
.m_axi_ready(dest_ready),
.m_axi_data(dest_data)
);
// We do not accept any requests until all components are enabled
reg _req_valid = 1'b0;
wire _req_ready;
always @(posedge req_aclk)
begin
if (req_aresetn == 1'b0) begin
_req_valid <= 1'b0;
end else begin
if (_req_valid == 1'b1 && _req_ready == 1'b1) begin
_req_valid <= 1'b0;
end else if (req_valid == 1'b1 && enabled == 1'b1) begin
_req_valid <= 1'b1;
end
end
end
assign req_ready = _req_ready & _req_valid & enable;
splitter #(
.C_NUM_M(3)
) i_req_splitter (
.clk(req_aclk),
.resetn(req_aresetn),
.s_valid(_req_valid),
.s_ready(_req_ready),
.m_valid({
req_gen_valid,
req_dest_valid,
req_src_valid
}),
.m_ready({
req_gen_ready,
req_dest_ready,
req_src_ready
})
);
axi_fifo #(
.C_DATA_WIDTH(DMA_ADDR_WIDTH_DEST + BEATS_PER_BURST_WIDTH_DEST + C_BYTES_PER_BEAT_WIDTH_DEST),
.C_ADDRESS_WIDTH(0),
.C_CLKS_ASYNC(C_CLKS_ASYNC_DEST_REQ)
) i_dest_req_fifo (
.s_axis_aclk(req_aclk),
.s_axis_aresetn(req_aresetn),
.s_axis_valid(req_dest_valid),
.s_axis_ready(req_dest_ready),
.s_axis_empty(req_dest_empty),
.s_axis_data({
req_dest_address,
req_length[BYTES_PER_BURST_WIDTH-1:C_BYTES_PER_BEAT_WIDTH_DEST],
req_length[C_BYTES_PER_BEAT_WIDTH_DEST-1:0]
}),
.m_axis_aclk(dest_clk),
.m_axis_aresetn(dest_resetn),
.m_axis_valid(dest_req_valid),
.m_axis_ready(dest_req_ready),
.m_axis_data({
dest_req_address,
dest_req_last_burst_length,
dest_req_last_beat_bytes
})
);
axi_fifo #(
.C_DATA_WIDTH(DMA_ADDR_WIDTH_SRC + BEATS_PER_BURST_WIDTH_SRC + 1),
.C_ADDRESS_WIDTH(0),
.C_CLKS_ASYNC(C_CLKS_ASYNC_REQ_SRC)
) i_src_req_fifo (
.s_axis_aclk(req_aclk),
.s_axis_aresetn(req_aresetn),
.s_axis_valid(req_src_valid),
.s_axis_ready(req_src_ready),
.s_axis_empty(req_src_empty),
.s_axis_data({
req_src_address,
req_length[BYTES_PER_BURST_WIDTH-1:C_BYTES_PER_BEAT_WIDTH_SRC],
req_sync_transfer_start
}),
.m_axis_aclk(src_clk),
.m_axis_aresetn(src_resetn),
.m_axis_valid(src_req_valid),
.m_axis_ready(src_req_ready),
.m_axis_data({
src_req_address,
src_req_last_burst_length,
src_req_sync_transfer_start
})
);
axi_fifo #(
.C_DATA_WIDTH(3),
.C_ADDRESS_WIDTH(0),
.C_CLKS_ASYNC(C_CLKS_ASYNC_DEST_REQ)
) i_dest_response_fifo (
.s_axis_aclk(dest_clk),
.s_axis_aresetn(dest_resetn),
.s_axis_valid(dest_response_valid),
.s_axis_ready(dest_response_ready),
.s_axis_empty(dest_response_empty),
.s_axis_data(dest_response_resp_eot),
.m_axis_aclk(req_aclk),
.m_axis_aresetn(req_aresetn),
.m_axis_valid(response_dest_valid),
.m_axis_ready(response_dest_ready),
.m_axis_data(response_dest_resp_eot)
);
axi_fifo #(
.C_DATA_WIDTH(2),
.C_ADDRESS_WIDTH(0),
.C_CLKS_ASYNC(C_CLKS_ASYNC_REQ_SRC)
) i_src_response_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(src_response_valid),
.s_axis_ready(src_response_ready),
.s_axis_empty(src_response_empty),
.s_axis_data(src_response_resp),
.m_axis_aclk(req_aclk),
.m_axis_aresetn(req_aresetn),
.m_axis_valid(response_src_valid),
.m_axis_ready(response_src_ready),
.m_axis_data(response_src_resp)
);
dmac_request_generator #(
.C_ID_WIDTH(C_ID_WIDTH),
.C_BURSTS_PER_TRANSFER_WIDTH(BURSTS_PER_TRANSFER_WIDTH)
) i_req_gen (
.req_aclk(req_aclk),
.req_aresetn(req_aresetn),
.request_id(request_id),
.response_id(response_id),
.req_valid(req_gen_valid),
.req_ready(req_gen_ready),
.req_burst_count(req_length[C_DMA_LENGTH_WIDTH-1:BYTES_PER_BURST_WIDTH]),
.enable(do_enable),
.pause(pause),
.eot(request_eot)
);
sync_bits #(
.NUM_BITS(3),
.CLK_ASYNC(C_CLKS_ASYNC_DEST_REQ)
) i_sync_control_dest (
.out_clk(dest_clk),
.out_resetn(dest_resetn),
.in({do_enable, pause, sync_id}),
.out({dest_enable, dest_pause, dest_sync_id})
);
sync_bits #(
.NUM_BITS(2),
.CLK_ASYNC(C_CLKS_ASYNC_DEST_REQ)
) i_sync_status_dest (
.out_clk(req_aclk),
.out_resetn(req_aresetn),
.in({dest_enabled | ~dest_response_empty, dest_sync_id_ret}),
.out({enabled_dest, sync_id_ret_dest})
);
sync_bits #(
.NUM_BITS(3),
.CLK_ASYNC(C_CLKS_ASYNC_REQ_SRC)
) i_sync_control_src (
.out_clk(src_clk),
.out_resetn(src_resetn),
.in({do_enable, pause, sync_id}),
.out({src_enable, src_pause, src_sync_id})
);
sync_bits #(
.NUM_BITS(3),
.CLK_ASYNC(C_CLKS_ASYNC_REQ_SRC)
) i_sync_status_src (
.out_clk(req_aclk),
.out_resetn(req_aresetn),
.in({src_enabled | ~src_response_empty, src_sync_id_ret, src_fifo_empty}),
.out({enabled_src, sync_id_ret_src, fifo_empty})
);
endmodule