335 lines
10 KiB
Verilog
335 lines
10 KiB
Verilog
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// Copyright (C) 2015-2023 Analog Devices, Inc. All rights reserved.
|
|
//
|
|
// In this HDL repository, there are many different and unique modules, consisting
|
|
// of various HDL (Verilog or VHDL) components. The individual modules are
|
|
// developed independently, and may be accompanied by separate and unique license
|
|
// terms.
|
|
//
|
|
// The user should read each of these license terms, and understand the
|
|
// freedoms and responsibilities that he or she has by using this source/core.
|
|
//
|
|
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
|
|
// A PARTICULAR PURPOSE.
|
|
//
|
|
// Redistribution and use of source or resulting binaries, with or without modification
|
|
// of this file, are permitted under one of the following two license terms:
|
|
//
|
|
// 1. The GNU General Public License version 2 as published by the
|
|
// Free Software Foundation, which can be found in the top level directory
|
|
// of this repository (LICENSE_GPL2), and also online at:
|
|
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
|
|
//
|
|
// OR
|
|
//
|
|
// 2. An ADI specific BSD license, which can be found in the top level directory
|
|
// of this repository (LICENSE_ADIBSD), and also on-line at:
|
|
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
|
|
// This will allow to generate bit files and not release the source code,
|
|
// as long as it attaches to an ADI device.
|
|
//
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
|
|
`timescale 1ns/100ps
|
|
|
|
module util_dacfifo #(
|
|
|
|
parameter ADDRESS_WIDTH = 6,
|
|
parameter DATA_WIDTH = 128
|
|
) (
|
|
|
|
// DMA interface
|
|
|
|
input dma_clk,
|
|
input dma_rst,
|
|
input dma_valid,
|
|
input [(DATA_WIDTH-1):0] dma_data,
|
|
output reg dma_ready,
|
|
input dma_xfer_req,
|
|
input dma_xfer_last,
|
|
|
|
// DAC interface
|
|
|
|
input dac_clk,
|
|
input dac_rst,
|
|
input dac_valid,
|
|
output reg [(DATA_WIDTH-1):0] dac_data,
|
|
output reg dac_dunf,
|
|
output reg dac_xfer_out,
|
|
|
|
input bypass
|
|
);
|
|
|
|
localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4;
|
|
|
|
// internal registers
|
|
|
|
reg dma_init = 1'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0;
|
|
reg dma_bypass = 1'b0;
|
|
reg dma_bypass_m1 = 1'b0;
|
|
reg dma_xfer_req_d1 = 1'b0;
|
|
reg dma_xfer_req_d2 = 1'b0;
|
|
reg dma_xfer_out_fifo = 1'b0;
|
|
|
|
reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0;
|
|
reg dac_mem_ready = 1'b0;
|
|
reg dac_xfer_req_m1 = 1'b0;
|
|
reg dac_xfer_req = 1'b0;
|
|
reg dac_xfer_req_d = 1'b0;
|
|
reg dac_xfer_out_fifo = 1'b0;
|
|
reg dac_xfer_out_fifo_m1 = 1'b0;
|
|
reg dac_xfer_out_fifo_d = 1'b0;
|
|
reg dac_bypass = 1'b0;
|
|
reg dac_bypass_m1 = 1'b0;
|
|
|
|
// internal wires
|
|
|
|
wire dma_rst_int_s;
|
|
wire dma_wren_s;
|
|
wire dma_xfer_posedge_s;
|
|
wire dma_ready_bypass_s;
|
|
wire [(DATA_WIDTH-1):0] dac_data_fifo_s;
|
|
wire [(DATA_WIDTH-1):0] dac_data_bypass_s;
|
|
wire [ADDRESS_WIDTH:0] dac_addr_diff_s;
|
|
wire [(ADDRESS_WIDTH-1):0] dma_waddr_b2g_s;
|
|
wire [(ADDRESS_WIDTH-1):0] dac_waddr_g2b_s;
|
|
wire [(ADDRESS_WIDTH-1):0] dac_lastaddr_g2b_s;
|
|
wire dac_mem_ren_s;
|
|
wire dac_xfer_posedge_s;
|
|
wire dac_rst_int_s;
|
|
|
|
// internal reset generation
|
|
|
|
always @(posedge dma_clk) begin
|
|
dma_xfer_req_d1 <= dma_xfer_req;
|
|
dma_xfer_req_d2 <= dma_xfer_req_d1;
|
|
end
|
|
assign dma_xfer_posedge_s = ~dma_xfer_req_d2 & dma_xfer_req_d1;
|
|
|
|
// status register indicating that the module is in initialization phase
|
|
|
|
always @(posedge dma_clk) begin
|
|
if ((dma_rst == 1'b1) || (dma_xfer_last == 1'b1)) begin
|
|
dma_init <= 1'b0;
|
|
end else begin
|
|
if (dma_xfer_posedge_s == 1'b1) begin
|
|
dma_init <= 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
// if the module is not in initialization phase, it should go
|
|
// into reset at a positive edge of dma_xfer_req
|
|
|
|
assign dma_rst_int_s = dma_rst | (dma_xfer_posedge_s & ~dma_init);
|
|
|
|
// DMA / Write interface
|
|
|
|
// write address generation
|
|
|
|
assign dma_wren_s = dma_valid & dma_ready;
|
|
|
|
always @(posedge dma_clk) begin
|
|
if(dma_rst_int_s == 1'b1) begin
|
|
dma_waddr <= 'b0;
|
|
dma_waddr_g <= 'b0;
|
|
dma_xfer_out_fifo <= 1'b0;
|
|
end else begin
|
|
if (dma_wren_s == 1'b1) begin
|
|
dma_waddr <= dma_waddr + 1'b1;
|
|
end
|
|
if (dma_xfer_last == 1'b1) begin
|
|
dma_waddr <= 'b0;
|
|
dma_xfer_out_fifo <= 1'b1;
|
|
end
|
|
dma_waddr_g <= dma_waddr_b2g_s;
|
|
end
|
|
end
|
|
|
|
ad_b2g #(
|
|
.DATA_WIDTH (ADDRESS_WIDTH)
|
|
) i_dma_waddr_b2g (
|
|
.din (dma_waddr),
|
|
.dout (dma_waddr_b2g_s));
|
|
|
|
// save the last write address
|
|
|
|
always @(posedge dma_clk) begin
|
|
if (dma_rst_int_s == 1'b1) begin
|
|
dma_lastaddr_g <= 'b0;
|
|
end else begin
|
|
if (dma_bypass == 1'b0) begin
|
|
dma_lastaddr_g <= (dma_xfer_last == 1'b1)? dma_waddr_b2g_s : dma_lastaddr_g;
|
|
end
|
|
end
|
|
end
|
|
|
|
// DAC / Read interface
|
|
|
|
always @(posedge dac_clk) begin
|
|
dac_xfer_req_m1 <= dma_xfer_req;
|
|
dac_xfer_req <= dac_xfer_req_m1;
|
|
dac_xfer_req_d <= dac_xfer_req;
|
|
end
|
|
assign dac_xfer_posedge_s = ~dac_xfer_req_d & dac_xfer_req;
|
|
|
|
// we can reset the DAC side at each positive edge of xfer_req, even if
|
|
// sometimes the reset is redundant
|
|
assign dac_rst_int_s = dac_xfer_req | dac_rst;
|
|
|
|
assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr;
|
|
|
|
// The memory module is ready if it's not empty
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst_int_s == 1'b1) begin
|
|
dac_addr_diff <= 'b0;
|
|
dac_waddr_m1 <= 'b0;
|
|
dac_waddr_m2 <= 'b0;
|
|
dac_waddr <= 'b0;
|
|
dac_mem_ready <= 1'b0;
|
|
end else begin
|
|
dac_waddr_m1 <= dma_waddr_g;
|
|
dac_waddr_m2 <= dac_waddr_m1;
|
|
dac_waddr <= dac_waddr_g2b_s;
|
|
dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0];
|
|
if (dac_addr_diff > 0) begin
|
|
dac_mem_ready <= 1'b1;
|
|
end else begin
|
|
dac_mem_ready <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
ad_g2b #(
|
|
.DATA_WIDTH (ADDRESS_WIDTH)
|
|
) i_dac_waddr_g2b (
|
|
.din (dac_waddr_m2),
|
|
.dout (dac_waddr_g2b_s));
|
|
|
|
// sync lastaddr to dac clock domain
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst_int_s == 1'b1) begin
|
|
dac_lastaddr_m1 <= 1'b0;
|
|
dac_lastaddr_m2 <= 1'b0;
|
|
dac_xfer_out_fifo_m1 <= 1'b0;
|
|
dac_xfer_out_fifo <= 1'b0;
|
|
dac_xfer_out_fifo_d <= 1'b0;
|
|
end else begin
|
|
dac_lastaddr_m1 <= dma_lastaddr_g;
|
|
dac_lastaddr_m2 <= dac_lastaddr_m1;
|
|
dac_lastaddr <= dac_lastaddr_g2b_s;
|
|
dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo;
|
|
dac_xfer_out_fifo <= dac_xfer_out_fifo_m1;
|
|
if (dac_valid)
|
|
dac_xfer_out_fifo_d <= dac_xfer_out_fifo;
|
|
end
|
|
end
|
|
|
|
ad_g2b #(
|
|
.DATA_WIDTH (ADDRESS_WIDTH)
|
|
) i_dac_lastaddr_g2b (
|
|
.din (dac_lastaddr_m2),
|
|
.dout (dac_lastaddr_g2b_s));
|
|
|
|
// generate dac read address
|
|
|
|
assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) :
|
|
(dac_valid & dac_xfer_out_fifo);
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst_int_s == 1'b1) begin
|
|
dac_raddr <= 'b0;
|
|
end else begin
|
|
if (dac_mem_ren_s == 1'b1) begin
|
|
if (dac_lastaddr == 'b0 || dac_raddr != dac_lastaddr) begin
|
|
dac_raddr <= dac_raddr + 1'b1;
|
|
end else begin
|
|
dac_raddr <= 'b0;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
// memory instantiation
|
|
|
|
ad_mem #(
|
|
.ADDRESS_WIDTH (ADDRESS_WIDTH),
|
|
.DATA_WIDTH (DATA_WIDTH)
|
|
) i_mem_fifo (
|
|
.clka (dma_clk),
|
|
.wea (dma_wren_s),
|
|
.addra (dma_waddr),
|
|
.dina (dma_data),
|
|
.clkb (dac_clk),
|
|
.reb (1'b1),
|
|
.addrb (dac_raddr),
|
|
.doutb (dac_data_fifo_s));
|
|
|
|
// define underflow
|
|
// underflow make sense just if bypass is enabled
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst_int_s == 1'b1) begin
|
|
dac_dunf <= 1'b0;
|
|
end else begin
|
|
dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_req & ~dac_mem_ren_s) : 1'b0;
|
|
end
|
|
end
|
|
|
|
// bypass logic
|
|
|
|
util_dacfifo_bypass #(
|
|
.DAC_DATA_WIDTH (DATA_WIDTH),
|
|
.DMA_DATA_WIDTH (DATA_WIDTH)
|
|
) i_dacfifo_bypass (
|
|
.dma_clk(dma_clk),
|
|
.dma_data(dma_data),
|
|
.dma_ready(dma_ready),
|
|
.dma_ready_out(dma_ready_bypass_s),
|
|
.dma_valid(dma_valid),
|
|
.dma_xfer_req(dma_xfer_req),
|
|
.dac_clk(dac_clk),
|
|
.dac_rst(dac_rst),
|
|
.dac_valid(dac_valid),
|
|
.dac_data(dac_data_bypass_s),
|
|
.dac_dunf(dac_dunf_bypass_s));
|
|
|
|
always @(posedge dma_clk) begin
|
|
dma_bypass_m1 <= bypass;
|
|
dma_bypass <= dma_bypass_m1;
|
|
end
|
|
|
|
always @(posedge dac_clk) begin
|
|
dac_bypass_m1 <= bypass;
|
|
dac_bypass <= dac_bypass_m1;
|
|
end
|
|
|
|
// the util_dacfifo is always ready for the DMA
|
|
always @(posedge dma_clk) begin
|
|
dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass_s : 1'b1;
|
|
end
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_valid) begin
|
|
dac_data <= (dac_bypass == 1'b1) ? dac_data_bypass_s : dac_data_fifo_s;
|
|
end
|
|
// this signal along with the dac_valid validate the data coming out from the buffer
|
|
dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_req : dac_xfer_out_fifo_d;
|
|
end
|
|
|
|
endmodule
|