320 lines
11 KiB
Verilog
320 lines
11 KiB
Verilog
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// Copyright 2011(c) Analog Devices, Inc.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
// - Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// - Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in
|
|
// the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// - Neither the name of Analog Devices, Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
// - The use of this software may or may not infringe the patent rights
|
|
// of one or more patent holders. This license does not release you
|
|
// from the requirement that you obtain separate licenses from these
|
|
// patent holders to use this software.
|
|
// - Use of the software either in source or binary form, must be run
|
|
// on or directly connected to an Analog Devices Inc. component.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
|
// PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
//
|
|
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
|
|
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
|
|
// This core supports the following CFTL pmods:
|
|
// - EVAL-CN0350-PMDZ
|
|
// - EVAL-CN0335-PMDZ
|
|
// - EVAL-CN0336-PMDZ
|
|
// - EVAL-CN0337-PMDZ
|
|
//
|
|
// It controls a simple three wire SPI interface with an additional control
|
|
// line for conversion start, and a counter which trigger the SPI read after
|
|
// the end of ADC conversion.
|
|
// NOTE: - The maximum frequency of serial read clock (adc_spi_clk) is 50Mhz.
|
|
// - The maximum conversion rate is 1MSPS (AD7091r)
|
|
// - The frequency of the serial read clock need to be adjusted to the desired
|
|
// conversion rate, exp. for AD7091r :
|
|
//
|
|
// ADC Rate >= ADC Conversion Time + SPI Word Length * ADC Serial Clock Period + Tquiet
|
|
// where ADC Conversion Time >= 650ns
|
|
// SPI Word Length = 12
|
|
// Tquiet >= 58ns
|
|
|
|
`timescale 1ns/1ns
|
|
|
|
module util_pmod_adc (
|
|
|
|
// clock and reset signals
|
|
|
|
clk,
|
|
reset,
|
|
|
|
// dma interface
|
|
adc_data,
|
|
adc_valid,
|
|
adc_enable,
|
|
adc_dbg,
|
|
|
|
// adc interface (clk, data, cs and conversion start)
|
|
|
|
adc_sdo,
|
|
adc_sclk,
|
|
adc_cs_n,
|
|
adc_convst_n
|
|
);
|
|
|
|
// parameters and local parameters
|
|
parameter FPGA_CLOCK_MHZ = 100; // FPGA clock frequency [MHz]
|
|
parameter ADC_CONVST_NS = 100; // minimum time to keep /CONVST low is 10ns, default is 100ns
|
|
parameter ADC_CONVERT_NS = 650; // conversion time [ns]
|
|
parameter ADC_TQUIET_NS = 60; // quite time between the last SPI read and next conversion start
|
|
parameter SPI_WORD_LENGTH = 12;
|
|
parameter ADC_RESET_LENGTH = 3;
|
|
parameter ADC_CLK_DIVIDE = 16;
|
|
|
|
// ADC states
|
|
localparam ADC_POWERUP = 0;
|
|
localparam ADC_SW_RESET = 1;
|
|
localparam ADC_IDLE = 2;
|
|
localparam ADC_START_CNV = 3;
|
|
localparam ADC_WAIT_CNV_DONE = 4;
|
|
localparam ADC_READ_CNV_RESULT = 5;
|
|
localparam ADC_DATA_VALID = 6;
|
|
localparam ADC_TQUIET = 7;
|
|
|
|
// ADC timing
|
|
|
|
localparam [15:0] FPGA_CLOCK_PERIOD_NS = 1000 / FPGA_CLOCK_MHZ;
|
|
localparam [15:0] ADC_CONVST_CNT = ADC_CONVST_NS / FPGA_CLOCK_PERIOD_NS;
|
|
localparam [15:0] ADC_CONVERT_CNT = ADC_CONVERT_NS / FPGA_CLOCK_PERIOD_NS;
|
|
localparam [15:0] ADC_TQUITE_CNT = ADC_TQUIET_NS / FPGA_CLOCK_PERIOD_NS;
|
|
|
|
// clock and reset signals
|
|
|
|
input clk; // system clock (100 MHz)
|
|
input reset; // active high reset signal
|
|
|
|
// dma interface
|
|
|
|
output [15:0] adc_data;
|
|
output adc_valid;
|
|
output adc_enable;
|
|
output [24:0] adc_dbg;
|
|
|
|
// adc interface
|
|
|
|
input adc_sdo;
|
|
output adc_sclk;
|
|
output adc_cs_n;
|
|
output adc_convst_n;
|
|
|
|
// Internal registers
|
|
|
|
reg [15:0] adc_data = 16'b0;
|
|
reg adc_valid = 1'b0;
|
|
reg [24:0] adc_dbg = 25'b0;
|
|
|
|
reg [ 2:0] adc_state = 3'b0; // current state for the ADC control state machine
|
|
reg [ 2:0] adc_next_state = 3'b0; // next state for the ADC control state machine
|
|
|
|
reg [15:0] adc_tconvst_cnt = 16'b0;
|
|
reg [15:0] adc_tconvert_cnt = 16'b0;
|
|
reg [15:0] adc_tquiet_cnt = 16'b0;
|
|
reg [15:0] sclk_clk_cnt = 16'b0;
|
|
reg [15:0] sclk_clk_cnt_m1 = 16'b0;
|
|
reg [7:0] adc_clk_cnt = 8'h0;
|
|
|
|
reg adc_convst_n = 1'b1;
|
|
reg adc_clk_en = 1'b0;
|
|
reg adc_cs_n = 1'b1;
|
|
reg adc_sw_reset = 1'b0;
|
|
reg data_rd_ready = 1'b0;
|
|
reg adc_spi_clk = 1'b0;
|
|
|
|
// Assign/Always Blocks
|
|
|
|
assign adc_sclk = adc_spi_clk & adc_clk_en;
|
|
assign adc_enable = 1'b1;
|
|
|
|
// spi clock generation
|
|
always @(posedge clk) begin
|
|
adc_clk_cnt <= adc_clk_cnt + 1;
|
|
if (adc_clk_cnt == ((ADC_CLK_DIVIDE/2)-1)) begin
|
|
adc_clk_cnt <= 0;
|
|
adc_spi_clk <= ~adc_spi_clk;
|
|
end
|
|
end
|
|
|
|
// update the ADC timing counters
|
|
|
|
always @(posedge clk)
|
|
begin
|
|
if(reset == 1'b1) begin
|
|
adc_tconvst_cnt <= ADC_CONVST_CNT;
|
|
adc_tconvert_cnt <= ADC_CONVERT_CNT;
|
|
adc_tquiet_cnt <= ADC_TQUITE_CNT;
|
|
end else begin
|
|
if(adc_state == ADC_START_CNV) begin
|
|
adc_tconvst_cnt <= adc_tconvst_cnt - 1;
|
|
end else begin
|
|
adc_tconvst_cnt <= ADC_CONVST_CNT;
|
|
end
|
|
if((adc_state == ADC_START_CNV) || (adc_state == ADC_WAIT_CNV_DONE)) begin
|
|
adc_tconvert_cnt <= adc_tconvert_cnt - 1;
|
|
end else begin
|
|
adc_tconvert_cnt <= ADC_CONVERT_CNT;
|
|
end
|
|
if(adc_state == ADC_TQUIET) begin
|
|
adc_tquiet_cnt <= adc_tquiet_cnt - 1;
|
|
end else begin
|
|
adc_tquiet_cnt <= ADC_TQUITE_CNT;
|
|
end
|
|
end
|
|
end
|
|
|
|
// determine when the ADC clock is valid
|
|
|
|
always @(negedge adc_spi_clk) begin
|
|
adc_clk_en <= ((adc_state == ADC_READ_CNV_RESULT) && (sclk_clk_cnt != 0)) ? 1'b1 : 1'b0;
|
|
end
|
|
|
|
// read data from the ADC
|
|
|
|
always @(negedge adc_spi_clk) begin
|
|
sclk_clk_cnt_m1 <= sclk_clk_cnt;
|
|
if((adc_clk_en == 1'b1) && (sclk_clk_cnt != 0)) begin
|
|
adc_data <= {3'b0, adc_data[11:0], adc_sdo};
|
|
if ((adc_sw_reset == 1'b1) && (sclk_clk_cnt == SPI_WORD_LENGTH - ADC_RESET_LENGTH + 1)) begin
|
|
sclk_clk_cnt <= 16'b0;
|
|
end else begin
|
|
sclk_clk_cnt <= sclk_clk_cnt - 1;
|
|
end
|
|
end
|
|
else if(adc_state != ADC_READ_CNV_RESULT) begin
|
|
adc_data <= 16'h0;
|
|
sclk_clk_cnt <= SPI_WORD_LENGTH - 1;
|
|
end
|
|
end
|
|
|
|
// update the ADC current state and the control signals
|
|
|
|
always @(posedge clk) begin
|
|
if(reset == 1'b1) begin
|
|
adc_state <= ADC_SW_RESET;
|
|
adc_dbg <= 1'b0;
|
|
end
|
|
else begin
|
|
adc_state <= adc_next_state;
|
|
adc_dbg <= {adc_state, adc_clk_en, sclk_clk_cnt};
|
|
case (adc_state)
|
|
ADC_POWERUP: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
adc_sw_reset <= 1'b0;
|
|
end
|
|
ADC_SW_RESET: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
adc_sw_reset <= 1'b1;
|
|
end
|
|
ADC_IDLE: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
adc_sw_reset <= 1'b0;
|
|
end
|
|
ADC_START_CNV: begin
|
|
adc_convst_n <= 1'b0;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
end
|
|
ADC_WAIT_CNV_DONE: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
end
|
|
ADC_READ_CNV_RESULT: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b0;
|
|
adc_valid <= 1'b0;
|
|
end
|
|
ADC_DATA_VALID: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b0;
|
|
adc_valid <= 1'b1;
|
|
end
|
|
ADC_TQUIET: begin
|
|
adc_convst_n <= 1'b1;
|
|
adc_cs_n <= 1'b1;
|
|
adc_valid <= 1'b0;
|
|
end
|
|
endcase
|
|
end
|
|
end
|
|
|
|
// update the ADC next state
|
|
|
|
always @(adc_state, adc_tconvst_cnt, adc_tconvert_cnt, sclk_clk_cnt_m1, adc_tquiet_cnt, adc_sw_reset) begin
|
|
adc_next_state <= adc_state;
|
|
case (adc_state)
|
|
ADC_POWERUP: begin
|
|
if(adc_sw_reset == 1'b1) begin
|
|
adc_next_state <= ADC_SW_RESET;
|
|
end
|
|
end
|
|
ADC_SW_RESET: begin
|
|
adc_next_state <= ADC_START_CNV;
|
|
end
|
|
ADC_IDLE: begin
|
|
adc_next_state <= ADC_START_CNV;
|
|
end
|
|
ADC_START_CNV: begin
|
|
if(adc_tconvst_cnt == 0) begin
|
|
adc_next_state <= ADC_WAIT_CNV_DONE;
|
|
end
|
|
end
|
|
ADC_WAIT_CNV_DONE: begin
|
|
if(adc_tconvert_cnt == 0) begin
|
|
adc_next_state <= ADC_READ_CNV_RESULT;
|
|
end
|
|
end
|
|
ADC_READ_CNV_RESULT: begin
|
|
if(sclk_clk_cnt_m1 == 0) begin
|
|
adc_next_state <= ADC_DATA_VALID;
|
|
end
|
|
end
|
|
ADC_DATA_VALID: begin
|
|
adc_next_state <= ADC_TQUIET;
|
|
end
|
|
ADC_TQUIET: begin
|
|
if(adc_tquiet_cnt == 0) begin
|
|
adc_next_state <= ADC_IDLE;
|
|
end
|
|
end
|
|
default: begin
|
|
adc_next_state <= ADC_IDLE;
|
|
end
|
|
endcase
|
|
end
|
|
|
|
endmodule
|
|
|