367 lines
11 KiB
Verilog
367 lines
11 KiB
Verilog
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// Copyright 2015(c) Analog Devices, Inc.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
// - Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// - Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in
|
|
// the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// - Neither the name of Analog Devices, Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
// - The use of this software may or may not infringe the patent rights
|
|
// of one or more patent holders. This license does not release you
|
|
// from the requirement that you obtain separate licenses from these
|
|
// patent holders to use this software.
|
|
// - Use of the software either in source or binary form, must be run
|
|
// on or directly connected to an Analog Devices Inc. component.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
|
|
// PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
//
|
|
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
|
|
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
// ***************************************************************************
|
|
|
|
`timescale 1ns/100ps
|
|
|
|
module util_dacfifo (
|
|
|
|
// DMA interface
|
|
|
|
dma_clk,
|
|
dma_rst,
|
|
dma_valid,
|
|
dma_data,
|
|
dma_ready,
|
|
dma_xfer_req,
|
|
dma_xfer_last,
|
|
|
|
// DAC interface
|
|
|
|
dac_clk,
|
|
dac_rst,
|
|
dac_valid,
|
|
dac_data,
|
|
dac_dunf,
|
|
dac_xfer_out,
|
|
|
|
bypass
|
|
);
|
|
|
|
// depth of the FIFO
|
|
|
|
parameter ADDRESS_WIDTH = 6;
|
|
parameter DATA_WIDTH = 128;
|
|
|
|
// port definitions
|
|
|
|
// DMA interface
|
|
|
|
input dma_clk;
|
|
input dma_rst;
|
|
input dma_valid;
|
|
input [(DATA_WIDTH-1):0] dma_data;
|
|
output dma_ready;
|
|
input dma_xfer_req;
|
|
input dma_xfer_last;
|
|
|
|
// DAC interface
|
|
|
|
input dac_clk;
|
|
input dac_rst;
|
|
input dac_valid;
|
|
output [(DATA_WIDTH-1):0] dac_data;
|
|
output dac_dunf;
|
|
output dac_xfer_out;
|
|
|
|
input bypass;
|
|
|
|
localparam FIFO_THRESHOLD_HI = {(ADDRESS_WIDTH){1'b1}} - 4;
|
|
|
|
// internal registers
|
|
|
|
reg [(ADDRESS_WIDTH-1):0] dma_waddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_waddr_g = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_lastaddr_g = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m1 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_raddr_m2 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_raddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dma_addr_diff = 'b0;
|
|
reg dma_ready = 1'b0;
|
|
reg dma_ready_fifo = 1'b0;
|
|
reg dma_ready_bypass = 1'b0;
|
|
reg dma_bypass = 1'b0;
|
|
reg dma_bypass_m1 = 1'b0;
|
|
reg dma_xfer_out_fifo = 1'b0;
|
|
reg dma_xfer_out_bypass = 1'b0;
|
|
|
|
reg [(ADDRESS_WIDTH-1):0] dac_raddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_raddr_g = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m1 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_waddr_m2 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_addr_diff = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m1 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr_m2 = 'b0;
|
|
reg [(ADDRESS_WIDTH-1):0] dac_lastaddr = 'b0;
|
|
reg [(DATA_WIDTH-1):0] dac_data = 'b0;
|
|
reg dac_mem_ready = 1'b0;
|
|
reg dac_xfer_out = 1'b0;
|
|
reg dac_xfer_out_fifo = 1'b0;
|
|
reg dac_xfer_out_fifo_m1 = 1'b0;
|
|
reg dac_xfer_out_bypass = 1'b0;
|
|
reg dac_xfer_out_bypass_m1 = 1'b0;
|
|
reg dac_bypass = 1'b0;
|
|
reg dac_bypass_m1 = 1'b0;
|
|
reg dac_dunf = 1'b0;
|
|
|
|
// internal wires
|
|
|
|
wire dma_wren_s;
|
|
wire [(DATA_WIDTH-1):0] dac_data_s;
|
|
wire [(ADDRESS_WIDTH):0] dma_addr_diff_s;
|
|
wire [(ADDRESS_WIDTH):0] dac_addr_diff_s;
|
|
|
|
// binary to grey conversion
|
|
|
|
function [9:0] b2g;
|
|
input [9:0] b;
|
|
reg [9:0] g;
|
|
begin
|
|
g[9] = b[9];
|
|
g[8] = b[9] ^ b[8];
|
|
g[7] = b[8] ^ b[7];
|
|
g[6] = b[7] ^ b[6];
|
|
g[5] = b[6] ^ b[5];
|
|
g[4] = b[5] ^ b[4];
|
|
g[3] = b[4] ^ b[3];
|
|
g[2] = b[3] ^ b[2];
|
|
g[1] = b[2] ^ b[1];
|
|
g[0] = b[1] ^ b[0];
|
|
b2g = g;
|
|
end
|
|
endfunction
|
|
|
|
// grey to binary conversion
|
|
|
|
function [9:0] g2b;
|
|
input [9:0] g;
|
|
reg [9:0] b;
|
|
begin
|
|
b[9] = g[9];
|
|
b[8] = b[9] ^ g[8];
|
|
b[7] = b[8] ^ g[7];
|
|
b[6] = b[7] ^ g[6];
|
|
b[5] = b[6] ^ g[5];
|
|
b[4] = b[5] ^ g[4];
|
|
b[3] = b[4] ^ g[3];
|
|
b[2] = b[3] ^ g[2];
|
|
b[1] = b[2] ^ g[1];
|
|
b[0] = b[1] ^ g[0];
|
|
g2b = b;
|
|
end
|
|
endfunction
|
|
|
|
// DMA / Write interface
|
|
|
|
// fifo is always ready, if it's not in bypass mode
|
|
|
|
always @(posedge dma_clk) begin
|
|
if(dma_rst == 1'b1) begin
|
|
dma_ready_fifo <= 1'b0;
|
|
end else begin
|
|
dma_ready_fifo <= 1'b1;
|
|
end
|
|
end
|
|
|
|
// if bypass is enabled, fifo request data until reaches the high threshold.
|
|
|
|
assign dma_addr_diff_s = {1'b1, dma_waddr} - dma_raddr;
|
|
|
|
always @(posedge dma_clk) begin
|
|
if (dma_rst == 1'b1) begin
|
|
dma_addr_diff <= 'b0;
|
|
dma_raddr_m1 <= 'b0;
|
|
dma_raddr_m2 <= 'b0;
|
|
dma_raddr <= 'b0;
|
|
dma_ready_bypass <= 1'b0;
|
|
end else begin
|
|
dma_raddr_m1 <= dac_raddr_g;
|
|
dma_raddr_m2 <= dma_raddr_m1;
|
|
dma_raddr <= g2b(dma_raddr_m2);
|
|
dma_addr_diff <= dma_addr_diff_s[ADDRESS_WIDTH-1:0];
|
|
if (dma_addr_diff >= FIFO_THRESHOLD_HI) begin
|
|
dma_ready_bypass <= 1'b0;
|
|
end else begin
|
|
dma_ready_bypass <= 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
// write address generation
|
|
|
|
assign dma_wren_s = dma_valid & dma_xfer_req & dma_ready;
|
|
|
|
always @(posedge dma_clk) begin
|
|
if(dma_rst == 1'b1) begin
|
|
dma_waddr <= 'b0;
|
|
dma_waddr_g <= 'b0;
|
|
dma_xfer_out_fifo <= 1'b0;
|
|
dma_xfer_out_bypass <= 1'b0;
|
|
end else begin
|
|
if (dma_wren_s == 1'b1) begin
|
|
dma_waddr <= dma_waddr + 1;
|
|
dma_xfer_out_fifo <= 1'b0;
|
|
end
|
|
if (dma_xfer_last == 1'b1) begin
|
|
dma_waddr <= 'b0;
|
|
dma_xfer_out_fifo <= 1'b1;
|
|
end
|
|
dma_waddr_g <= b2g(dma_waddr);
|
|
dma_xfer_out_bypass <= dma_xfer_req;
|
|
end
|
|
end
|
|
|
|
// save the last write address
|
|
|
|
always @(posedge dma_clk) begin
|
|
if (dma_rst == 1'b1) begin
|
|
dma_lastaddr_g <= 'b0;
|
|
end else begin
|
|
if (dma_bypass == 1'b0) begin
|
|
dma_lastaddr_g <= (dma_xfer_last == 1'b1)? b2g(dma_waddr) : dma_lastaddr_g;
|
|
end
|
|
end
|
|
end
|
|
|
|
// DAC / Read interface
|
|
|
|
// The memory module is ready if it's not empty
|
|
|
|
assign dac_addr_diff_s = {1'b1, dac_waddr} - dac_raddr;
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst == 1'b1) begin
|
|
dac_addr_diff <= 'b0;
|
|
dac_waddr_m1 <= 'b0;
|
|
dac_waddr_m2 <= 'b0;
|
|
dac_waddr <= 'b0;
|
|
dac_mem_ready <= 1'b0;
|
|
end else begin
|
|
dac_waddr_m1 <= dma_waddr_g;
|
|
dac_waddr_m2 <= dac_waddr_m1;
|
|
dac_waddr <= g2b(dac_waddr_m2);
|
|
dac_addr_diff <= dac_addr_diff_s[ADDRESS_WIDTH-1:0];
|
|
if (dac_addr_diff > 0) begin
|
|
dac_mem_ready <= 1'b1;
|
|
end else begin
|
|
dac_mem_ready <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
// sync lastaddr to dac clock domain
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst == 1'b1) begin
|
|
dac_lastaddr_m1 <= 1'b0;
|
|
dac_lastaddr_m2 <= 1'b0;
|
|
dac_xfer_out_fifo_m1 <= 1'b0;
|
|
dac_xfer_out_fifo <= 1'b0;
|
|
dac_xfer_out_bypass_m1 <= 1'b0;
|
|
dac_xfer_out_bypass <= 1'b0;
|
|
end else begin
|
|
dac_lastaddr_m1 <= dma_lastaddr_g;
|
|
dac_lastaddr_m2 <= dac_lastaddr_m1;
|
|
dac_lastaddr <= g2b(dac_lastaddr_m2);
|
|
dac_xfer_out_fifo_m1 <= dma_xfer_out_fifo;
|
|
dac_xfer_out_fifo <= dac_xfer_out_fifo_m1;
|
|
dac_xfer_out_bypass_m1 <= dma_xfer_out_bypass;
|
|
dac_xfer_out_bypass <= dac_xfer_out_bypass_m1;
|
|
end
|
|
end
|
|
|
|
// generate dac read address
|
|
|
|
assign dac_mem_ren_s = (dac_bypass == 1'b1) ? (dac_valid & dac_mem_ready) : (dac_valid & dac_xfer_out_fifo);
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst == 1'b1) begin
|
|
dac_raddr <= 'b0;
|
|
dac_raddr_g <= 'b0;
|
|
end else begin
|
|
if (dac_mem_ren_s == 1'b1) begin
|
|
if (dac_lastaddr == 'b0) begin
|
|
dac_raddr <= dac_raddr + 1;
|
|
end else begin
|
|
dac_raddr <= (dac_raddr < dac_lastaddr) ? (dac_raddr + 1) : 'b0;
|
|
end
|
|
end
|
|
dac_raddr_g <= b2g(dac_raddr);
|
|
end
|
|
end
|
|
|
|
// memory instantiation
|
|
|
|
ad_mem #(
|
|
.ADDRESS_WIDTH (ADDRESS_WIDTH),
|
|
.DATA_WIDTH (DATA_WIDTH))
|
|
i_mem_fifo (
|
|
.clka (dma_clk),
|
|
.wea (dma_wren_s),
|
|
.addra (dma_waddr),
|
|
.dina (dma_data),
|
|
.clkb (dac_clk),
|
|
.addrb (dac_raddr),
|
|
.doutb (dac_data_s));
|
|
|
|
// define underflow
|
|
// underflow make sense just if bypass is enabled
|
|
|
|
always @(posedge dac_clk) begin
|
|
if (dac_rst == 1'b1) begin
|
|
dac_dunf <= 1'b0;
|
|
end else begin
|
|
dac_dunf <= (dac_bypass == 1'b1) ? (dac_valid & dac_xfer_out_bypass & ~dac_mem_ren_s) : 1'b0;
|
|
end
|
|
end
|
|
|
|
// output logic
|
|
|
|
always @(posedge dma_clk) begin
|
|
dma_bypass_m1 <= bypass;
|
|
dma_bypass <= dma_bypass_m1;
|
|
end
|
|
|
|
always @(posedge dac_clk) begin
|
|
dac_bypass_m1 <= bypass;
|
|
dac_bypass <= dac_bypass_m1;
|
|
end
|
|
|
|
always @(posedge dma_clk) begin
|
|
dma_ready <= (dma_bypass == 1'b1) ? dma_ready_bypass : dma_ready_fifo;
|
|
end
|
|
|
|
always @(posedge dac_clk) begin
|
|
dac_data <= dac_data_s;
|
|
dac_xfer_out <= (dac_bypass == 1'b1) ? dac_xfer_out_bypass : dac_xfer_out_fifo;
|
|
end
|
|
|
|
endmodule
|
|
|