pluto_hdl_adi/library/axi_dmac/request_arb.v

1197 lines
33 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module dmac_request_arb #(
parameter DMA_DATA_WIDTH_SRC = 64,
parameter DMA_DATA_WIDTH_DEST = 64,
parameter DMA_LENGTH_WIDTH = 24,
parameter DMA_LENGTH_ALIGN = 3,
parameter BYTES_PER_BEAT_WIDTH_DEST = $clog2(DMA_DATA_WIDTH_DEST/8),
parameter BYTES_PER_BEAT_WIDTH_SRC = $clog2(DMA_DATA_WIDTH_SRC/8),
parameter DMA_TYPE_DEST = 0,
parameter DMA_TYPE_SRC = 2,
parameter DMA_AXI_ADDR_WIDTH = 32,
parameter ASYNC_CLK_REQ_SRC = 1,
parameter ASYNC_CLK_SRC_DEST = 1,
parameter ASYNC_CLK_DEST_REQ = 1,
parameter AXI_SLICE_DEST = 0,
parameter AXI_SLICE_SRC = 0,
parameter MAX_BYTES_PER_BURST = 128,
parameter BYTES_PER_BURST_WIDTH = 7,
parameter FIFO_SIZE = 8,
parameter ID_WIDTH = $clog2(FIFO_SIZE*2),
parameter AXI_LENGTH_WIDTH_SRC = 8,
parameter AXI_LENGTH_WIDTH_DEST = 8,
parameter ENABLE_DIAGNOSTICS_IF = 0,
parameter ALLOW_ASYM_MEM = 0
)(
input req_clk,
input req_resetn,
input req_valid,
output req_ready,
input [DMA_AXI_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH_DEST] req_dest_address,
input [DMA_AXI_ADDR_WIDTH-1:BYTES_PER_BEAT_WIDTH_SRC] req_src_address,
input [DMA_LENGTH_WIDTH-1:0] req_length,
input req_xlast,
input req_sync_transfer_start,
output eot,
output [BYTES_PER_BURST_WIDTH-1:0] measured_burst_length,
output response_partial,
output response_valid,
input response_ready,
output abort_req,
// Master AXI interface
input m_dest_axi_aclk,
input m_dest_axi_aresetn,
input m_src_axi_aclk,
input m_src_axi_aresetn,
// Write address
output [DMA_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output [AXI_LENGTH_WIDTH_DEST-1:0] m_axi_awlen,
output [ 2:0] m_axi_awsize,
output [ 1:0] m_axi_awburst,
output [ 2:0] m_axi_awprot,
output [ 3:0] m_axi_awcache,
output m_axi_awvalid,
input m_axi_awready,
// Write data
output [DMA_DATA_WIDTH_DEST-1:0] m_axi_wdata,
output [(DMA_DATA_WIDTH_DEST/8)-1:0] m_axi_wstrb,
input m_axi_wready,
output m_axi_wvalid,
output m_axi_wlast,
// Write response
input m_axi_bvalid,
input [ 1:0] m_axi_bresp,
output m_axi_bready,
// Read address
input m_axi_arready,
output m_axi_arvalid,
output [DMA_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output [AXI_LENGTH_WIDTH_SRC-1:0] m_axi_arlen,
output [ 2:0] m_axi_arsize,
output [ 1:0] m_axi_arburst,
output [ 2:0] m_axi_arprot,
output [ 3:0] m_axi_arcache,
// Read data and response
input [DMA_DATA_WIDTH_SRC-1:0] m_axi_rdata,
output m_axi_rready,
input m_axi_rvalid,
input m_axi_rlast,
input [ 1:0] m_axi_rresp,
// Slave streaming AXI interface
input s_axis_aclk,
output s_axis_ready,
input s_axis_valid,
input [DMA_DATA_WIDTH_SRC-1:0] s_axis_data,
input s_axis_last,
input [0:0] s_axis_user,
output s_axis_xfer_req,
// Master streaming AXI interface
input m_axis_aclk,
input m_axis_ready,
output m_axis_valid,
output [DMA_DATA_WIDTH_DEST-1:0] m_axis_data,
output m_axis_last,
output m_axis_xfer_req,
// Input FIFO interface
input fifo_wr_clk,
input fifo_wr_en,
input [DMA_DATA_WIDTH_SRC-1:0] fifo_wr_din,
output fifo_wr_overflow,
input fifo_wr_sync,
output fifo_wr_xfer_req,
// Input FIFO interface
input fifo_rd_clk,
input fifo_rd_en,
output fifo_rd_valid,
output [DMA_DATA_WIDTH_DEST-1:0] fifo_rd_dout,
output fifo_rd_underflow,
output fifo_rd_xfer_req,
output [ID_WIDTH-1:0] dbg_dest_request_id,
output [ID_WIDTH-1:0] dbg_dest_address_id,
output [ID_WIDTH-1:0] dbg_dest_data_id,
output [ID_WIDTH-1:0] dbg_dest_response_id,
output [ID_WIDTH-1:0] dbg_src_request_id,
output [ID_WIDTH-1:0] dbg_src_address_id,
output [ID_WIDTH-1:0] dbg_src_data_id,
output [ID_WIDTH-1:0] dbg_src_response_id,
input req_enable,
output dest_clk,
input dest_resetn,
output dest_ext_resetn,
input dest_enable,
output dest_enabled,
output src_clk,
input src_resetn,
output src_ext_resetn,
input src_enable,
output src_enabled,
// Diagnostics interface
output [7:0] dest_diag_level_bursts
);
localparam DMA_TYPE_MM_AXI = 0;
localparam DMA_TYPE_STREAM_AXI = 1;
localparam DMA_TYPE_FIFO = 2;
localparam DMA_ADDRESS_WIDTH_DEST = DMA_AXI_ADDR_WIDTH - BYTES_PER_BEAT_WIDTH_DEST;
localparam DMA_ADDRESS_WIDTH_SRC = DMA_AXI_ADDR_WIDTH - BYTES_PER_BEAT_WIDTH_SRC;
// Bytes per burst is the same for both dest and src, but bytes per beat may
// differ, so beats per burst may also differ
localparam BEATS_PER_BURST_WIDTH_SRC = BYTES_PER_BURST_WIDTH - BYTES_PER_BEAT_WIDTH_SRC;
localparam BEATS_PER_BURST_WIDTH_DEST = BYTES_PER_BURST_WIDTH - BYTES_PER_BEAT_WIDTH_DEST;
localparam BURSTS_PER_TRANSFER_WIDTH = DMA_LENGTH_WIDTH - BYTES_PER_BURST_WIDTH;
reg eot_mem_src[0:2**ID_WIDTH-1];
reg eot_mem_dest[0:2**ID_WIDTH-1];
wire request_eot;
wire source_eot;
wire [ID_WIDTH-1:0] request_id;
wire [ID_WIDTH-1:0] source_id;
wire [ID_WIDTH-1:0] response_id;
wire enabled_src;
wire enabled_dest;
wire req_gen_valid;
wire req_gen_ready;
wire src_dest_valid;
wire src_dest_ready;
wire req_src_valid;
wire req_src_ready;
wire dest_req_valid;
wire dest_req_ready;
wire [DMA_ADDRESS_WIDTH_DEST-1:0] dest_req_dest_address;
wire dest_req_xlast;
wire dest_response_valid;
wire dest_response_ready;
wire [1:0] dest_response_resp;
wire dest_response_resp_eot;
wire [BYTES_PER_BURST_WIDTH-1:0] dest_response_data_burst_length;
wire dest_response_partial;
wire [ID_WIDTH-1:0] dest_request_id;
wire [ID_WIDTH-1:0] dest_data_request_id;
wire [ID_WIDTH-1:0] dest_data_response_id;
wire [ID_WIDTH-1:0] dest_response_id;
wire dest_valid;
wire dest_ready;
wire [DMA_DATA_WIDTH_DEST-1:0] dest_data;
wire [DMA_DATA_WIDTH_DEST/8-1:0] dest_strb;
wire dest_last;
wire dest_fifo_valid;
wire dest_fifo_ready;
wire [DMA_DATA_WIDTH_DEST-1:0] dest_fifo_data;
wire [DMA_DATA_WIDTH_DEST/8-1:0] dest_fifo_strb;
wire dest_fifo_last;
wire src_req_valid;
wire src_req_ready;
wire [DMA_ADDRESS_WIDTH_DEST-1:0] src_req_dest_address;
wire [DMA_ADDRESS_WIDTH_SRC-1:0] src_req_src_address;
wire [BEATS_PER_BURST_WIDTH_SRC-1:0] src_req_last_burst_length;
wire [BYTES_PER_BEAT_WIDTH_SRC-1:0] src_req_last_beat_bytes;
wire src_req_sync_transfer_start;
wire src_req_xlast;
reg [DMA_ADDRESS_WIDTH_DEST-1:0] src_req_dest_address_cur = 'h0;
reg src_req_xlast_cur = 1'b0;
/* TODO
wire src_response_valid;
wire src_response_ready;
wire src_response_empty;
wire [1:0] src_response_resp;
*/
wire [ID_WIDTH-1:0] src_request_id;
reg [ID_WIDTH-1:0] src_throttled_request_id;
wire [ID_WIDTH-1:0] src_data_request_id;
wire [ID_WIDTH-1:0] src_response_id;
wire src_valid;
wire [DMA_DATA_WIDTH_SRC-1:0] src_data;
wire [BYTES_PER_BEAT_WIDTH_SRC-1:0] src_valid_bytes;
wire src_last;
wire src_partial_burst;
wire block_descr_to_dst;
wire src_fifo_valid;
wire [DMA_DATA_WIDTH_SRC-1:0] src_fifo_data;
wire [BYTES_PER_BEAT_WIDTH_SRC-1:0] src_fifo_valid_bytes;
wire src_fifo_last;
wire src_fifo_partial_burst;
wire src_bl_valid;
wire src_bl_ready;
wire [BEATS_PER_BURST_WIDTH_SRC-1:0] src_burst_length;
wire [BYTES_PER_BURST_WIDTH-1:0] dest_burst_info_length;
wire dest_burst_info_partial;
wire [ID_WIDTH-1:0] dest_burst_info_id;
wire dest_burst_info_write;
reg src_dest_valid_hs = 1'b0;
wire src_dest_valid_hs_masked;
wire src_dest_ready_hs;
wire req_rewind_req_valid;
wire req_rewind_req_ready;
wire [ID_WIDTH+3-1:0] req_rewind_req_data;
wire completion_req_valid;
wire completion_req_ready;
wire completion_req_last;
wire [1:0] completion_transfer_id;
wire rewind_req_valid;
wire rewind_req_ready;
wire [ID_WIDTH+3-1:0] rewind_req_data;
reg src_throttler_enabled = 1'b1;
wire src_throttler_enable;
wire rewind_state;
/* Unused for now
wire response_src_valid;
wire response_src_ready = 1'b1;
wire [1:0] response_src_resp;
*/
assign dbg_dest_request_id = dest_request_id;
assign dbg_dest_response_id = dest_response_id;
assign dbg_src_request_id = src_request_id;
assign dbg_src_response_id = src_response_id;
always @(posedge req_clk)
begin
eot_mem_src[request_id] <= request_eot;
end
always @(posedge src_clk)
begin
eot_mem_dest[source_id] <= source_eot;
end
generate if (DMA_TYPE_DEST == DMA_TYPE_MM_AXI) begin
wire dest_bl_valid;
wire dest_bl_ready;
wire [BEATS_PER_BURST_WIDTH_DEST-1:0] dest_burst_length;
wire [BEATS_PER_BURST_WIDTH_SRC-1:0] dest_src_burst_length;
assign dest_clk = m_dest_axi_aclk;
assign dest_ext_resetn = m_dest_axi_aresetn;
wire [ID_WIDTH-1:0] dest_address_id;
wire dest_address_eot = eot_mem_dest[dest_address_id];
wire dest_response_eot = eot_mem_dest[dest_response_id];
assign dbg_dest_address_id = dest_address_id;
assign dbg_dest_data_id = dest_data_response_id;
assign dest_data_request_id = dest_address_id;
dmac_dest_mm_axi #(
.ID_WIDTH(ID_WIDTH),
.DMA_DATA_WIDTH(DMA_DATA_WIDTH_DEST),
.DMA_ADDR_WIDTH(DMA_AXI_ADDR_WIDTH),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST),
.BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH_DEST),
.MAX_BYTES_PER_BURST(MAX_BYTES_PER_BURST),
.BYTES_PER_BURST_WIDTH(BYTES_PER_BURST_WIDTH),
.AXI_LENGTH_WIDTH(AXI_LENGTH_WIDTH_DEST)
) i_dest_dma_mm (
.m_axi_aclk(m_dest_axi_aclk),
.m_axi_aresetn(dest_resetn),
.enable(dest_enable),
.enabled(dest_enabled),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.req_address(dest_req_dest_address),
.bl_valid(dest_bl_valid),
.bl_ready(dest_bl_ready),
.measured_last_burst_length(dest_burst_length),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.response_resp_partial(dest_response_partial),
.response_data_burst_length(dest_response_data_burst_length),
.request_id(dest_request_id),
.response_id(dest_response_id),
.address_id(dest_address_id),
.address_eot(dest_address_eot),
.response_eot(dest_response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.fifo_strb(dest_strb),
.fifo_last(dest_last),
.dest_burst_info_length(dest_burst_info_length),
.dest_burst_info_partial(dest_burst_info_partial),
.dest_burst_info_id(dest_burst_info_id),
.dest_burst_info_write(dest_burst_info_write),
.m_axi_awready(m_axi_awready),
.m_axi_awvalid(m_axi_awvalid),
.m_axi_awaddr(m_axi_awaddr),
.m_axi_awlen(m_axi_awlen),
.m_axi_awsize(m_axi_awsize),
.m_axi_awburst(m_axi_awburst),
.m_axi_awprot(m_axi_awprot),
.m_axi_awcache(m_axi_awcache),
.m_axi_wready(m_axi_wready),
.m_axi_wvalid(m_axi_wvalid),
.m_axi_wdata(m_axi_wdata),
.m_axi_wstrb(m_axi_wstrb),
.m_axi_wlast(m_axi_wlast),
.m_axi_bvalid(m_axi_bvalid),
.m_axi_bresp(m_axi_bresp),
.m_axi_bready(m_axi_bready)
);
util_axis_fifo #(
.DATA_WIDTH(BEATS_PER_BURST_WIDTH_SRC),
.ADDRESS_WIDTH(0),
.ASYNC_CLK(ASYNC_CLK_SRC_DEST)
) i_src_dest_bl_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(src_bl_valid),
.s_axis_ready(src_bl_ready),
.s_axis_empty(),
.s_axis_data(src_burst_length),
.s_axis_room(),
.m_axis_aclk(dest_clk),
.m_axis_aresetn(dest_resetn),
.m_axis_valid(dest_bl_valid),
.m_axis_ready(dest_bl_ready),
.m_axis_data(dest_src_burst_length),
.m_axis_level()
);
// Adapt burst length from source width to destination width by either
// truncation or completion with ones.
if (BEATS_PER_BURST_WIDTH_SRC == BEATS_PER_BURST_WIDTH_DEST) begin
assign dest_burst_length = dest_src_burst_length;
end
if (BEATS_PER_BURST_WIDTH_SRC < BEATS_PER_BURST_WIDTH_DEST) begin
assign dest_burst_length = {dest_src_burst_length,
{BEATS_PER_BURST_WIDTH_DEST - BEATS_PER_BURST_WIDTH_SRC{1'b1}}};
end
if (BEATS_PER_BURST_WIDTH_SRC > BEATS_PER_BURST_WIDTH_DEST) begin
assign dest_burst_length = dest_src_burst_length[BEATS_PER_BURST_WIDTH_SRC-1 -: BEATS_PER_BURST_WIDTH_DEST];
end
end else begin
assign m_axi_awvalid = 1'b0;
assign m_axi_awaddr = 'h00;
assign m_axi_awlen = 'h00;
assign m_axi_awsize = 'h00;
assign m_axi_awburst = 'h00;
assign m_axi_awprot = 'h00;
assign m_axi_awcache = 'h00;
assign m_axi_wvalid = 1'b0;
assign m_axi_wdata = 'h00;
assign m_axi_wstrb = 'h00;
assign m_axi_wlast = 1'b0;
assign m_axi_bready = 1'b0;
assign src_bl_ready = 1'b1;
assign dest_response_partial = 1'b0;
assign dest_response_data_burst_length = 'h0;
end
if (DMA_TYPE_DEST == DMA_TYPE_STREAM_AXI) begin
assign dest_clk = m_axis_aclk;
assign dest_ext_resetn = 1'b1;
wire [ID_WIDTH-1:0] data_id;
wire data_eot = eot_mem_dest[data_id];
wire response_eot = eot_mem_dest[dest_response_id];
assign dest_data_request_id = dest_request_id;
assign dbg_dest_address_id = 'h00;
assign dbg_dest_data_id = data_id;
dmac_dest_axi_stream #(
.ID_WIDTH(ID_WIDTH),
.S_AXIS_DATA_WIDTH(DMA_DATA_WIDTH_DEST),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST)
) i_dest_dma_stream (
.s_axis_aclk(m_axis_aclk),
.s_axis_aresetn(dest_resetn),
.enable(dest_enable),
.enabled(dest_enabled),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.req_xlast(dest_req_xlast),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.response_id(dest_response_id),
.data_id(data_id),
.xfer_req(m_axis_xfer_req),
.data_eot(data_eot),
.response_eot(response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.fifo_last(dest_last),
.m_axis_valid(m_axis_valid),
.m_axis_ready(m_axis_ready),
.m_axis_data(m_axis_data),
.m_axis_last(m_axis_last)
);
end else begin
assign m_axis_valid = 1'b0;
assign m_axis_last = 1'b0;
assign m_axis_xfer_req = 1'b0;
assign m_axis_data = 'h00;
end
if (DMA_TYPE_DEST == DMA_TYPE_FIFO) begin
assign dest_clk = fifo_rd_clk;
assign dest_ext_resetn = 1'b1;
wire [ID_WIDTH-1:0] data_id;
wire data_eot = eot_mem_dest[data_id];
wire response_eot = eot_mem_dest[dest_response_id];
assign dest_data_request_id = dest_request_id;
assign dbg_dest_address_id = 'h00;
assign dbg_dest_data_id = data_id;
dmac_dest_fifo_inf #(
.ID_WIDTH(ID_WIDTH),
.DATA_WIDTH(DMA_DATA_WIDTH_DEST),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_DEST)
) i_dest_dma_fifo (
.clk(fifo_rd_clk),
.resetn(dest_resetn),
.enable(dest_enable),
.enabled(dest_enabled),
.req_valid(dest_req_valid),
.req_ready(dest_req_ready),
.response_valid(dest_response_valid),
.response_ready(dest_response_ready),
.response_resp(dest_response_resp),
.response_resp_eot(dest_response_resp_eot),
.response_id(dest_response_id),
.data_id(data_id),
.data_eot(data_eot),
.response_eot(response_eot),
.fifo_valid(dest_valid),
.fifo_ready(dest_ready),
.fifo_data(dest_data),
.fifo_last(dest_last),
.en(fifo_rd_en),
.valid(fifo_rd_valid),
.dout(fifo_rd_dout),
.underflow(fifo_rd_underflow),
.xfer_req(fifo_rd_xfer_req)
);
end else begin
assign fifo_rd_valid = 1'b0;
assign fifo_rd_dout = 'h0;
assign fifo_rd_underflow = 1'b0;
assign fifo_rd_xfer_req = 1'b0;
end endgenerate
generate if (DMA_TYPE_SRC == DMA_TYPE_MM_AXI) begin
wire [ID_WIDTH-1:0] src_data_id;
wire [ID_WIDTH-1:0] src_address_id;
wire src_address_eot = eot_mem_src[src_address_id];
assign source_id = src_address_id;
assign source_eot = src_address_eot;
assign src_clk = m_src_axi_aclk;
assign src_ext_resetn = m_src_axi_aresetn;
assign dbg_src_address_id = src_address_id;
assign dbg_src_data_id = src_data_id;
dmac_src_mm_axi #(
.ID_WIDTH(ID_WIDTH),
.DMA_DATA_WIDTH(DMA_DATA_WIDTH_SRC),
.DMA_ADDR_WIDTH(DMA_AXI_ADDR_WIDTH),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC),
.BYTES_PER_BEAT_WIDTH(BYTES_PER_BEAT_WIDTH_SRC),
.AXI_LENGTH_WIDTH(AXI_LENGTH_WIDTH_SRC)
) i_src_dma_mm (
.m_axi_aclk(m_src_axi_aclk),
.m_axi_aresetn(src_resetn),
.enable(src_enable),
.enabled(src_enabled),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_address(src_req_src_address),
.req_last_burst_length(src_req_last_burst_length),
.req_last_beat_bytes(src_req_last_beat_bytes),
.bl_valid(src_bl_valid),
.bl_ready(src_bl_ready),
.measured_last_burst_length(src_burst_length),
/* TODO
.response_valid(src_response_valid),
.response_ready(src_response_ready),
.response_resp(src_response_resp),
*/
.request_id(src_throttled_request_id),
.response_id(src_response_id),
.address_id(src_address_id),
.data_id(src_data_id),
.address_eot(src_address_eot),
.fifo_valid(src_valid),
.fifo_data(src_data),
.fifo_valid_bytes(src_valid_bytes),
.fifo_last(src_last),
.m_axi_arready(m_axi_arready),
.m_axi_arvalid(m_axi_arvalid),
.m_axi_araddr(m_axi_araddr),
.m_axi_arlen(m_axi_arlen),
.m_axi_arsize(m_axi_arsize),
.m_axi_arburst(m_axi_arburst),
.m_axi_arprot(m_axi_arprot),
.m_axi_arcache(m_axi_arcache),
.m_axi_rready(m_axi_rready),
.m_axi_rvalid(m_axi_rvalid),
.m_axi_rdata(m_axi_rdata),
.m_axi_rlast(m_axi_rlast),
.m_axi_rresp(m_axi_rresp)
);
end else begin
assign m_axi_arvalid = 1'b0;
assign m_axi_araddr = 'h00;
assign m_axi_arlen = 'h00;
assign m_axi_arsize = 'h00;
assign m_axi_arburst = 'h00;
assign m_axi_arcache = 'h00;
assign m_axi_arprot = 'h00;
assign m_axi_rready = 1'b0;
end
if (DMA_TYPE_SRC == DMA_TYPE_STREAM_AXI) begin
assign src_clk = s_axis_aclk;
assign src_ext_resetn = 1'b1;
wire src_eot = eot_mem_src[src_response_id];
assign dbg_src_address_id = 'h00;
assign dbg_src_data_id = 'h00;
/* TODO
assign src_response_valid = 1'b0;
assign src_response_resp = 2'b0;
*/
dmac_src_axi_stream #(
.ID_WIDTH(ID_WIDTH),
.S_AXIS_DATA_WIDTH(DMA_DATA_WIDTH_SRC),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC)
) i_src_dma_stream (
.s_axis_aclk(s_axis_aclk),
.s_axis_aresetn(src_resetn),
.enable(src_enable),
.enabled(src_enabled),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_last_burst_length(src_req_last_burst_length),
.req_sync_transfer_start(src_req_sync_transfer_start),
.req_xlast(src_req_xlast),
.request_id(src_throttled_request_id),
.response_id(src_response_id),
.eot(src_eot),
.rewind_req_valid(rewind_req_valid),
.rewind_req_ready(rewind_req_ready),
.rewind_req_data(rewind_req_data),
.bl_valid(src_bl_valid),
.bl_ready(src_bl_ready),
.measured_last_burst_length(src_burst_length),
.block_descr_to_dst(block_descr_to_dst),
.source_id(source_id),
.source_eot(source_eot),
.fifo_valid(src_valid),
.fifo_data(src_data),
.fifo_last(src_last),
.fifo_partial_burst(src_partial_burst),
.s_axis_valid(s_axis_valid),
.s_axis_ready(s_axis_ready),
.s_axis_data(s_axis_data),
.s_axis_last(s_axis_last),
.s_axis_user(s_axis_user),
.s_axis_xfer_req(s_axis_xfer_req)
);
assign src_valid_bytes = {BYTES_PER_BEAT_WIDTH_SRC{1'b1}};
util_axis_fifo #(
.DATA_WIDTH(ID_WIDTH + 3),
.ADDRESS_WIDTH(0),
.ASYNC_CLK(ASYNC_CLK_REQ_SRC)
) i_rewind_req_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(rewind_req_valid),
.s_axis_ready(rewind_req_ready),
.s_axis_empty(),
.s_axis_data(rewind_req_data),
.s_axis_room(),
.m_axis_aclk(req_clk),
.m_axis_aresetn(req_resetn),
.m_axis_valid(req_rewind_req_valid),
.m_axis_ready(req_rewind_req_ready),
.m_axis_data(req_rewind_req_data),
.m_axis_level()
);
end else begin
assign s_axis_ready = 1'b0;
assign s_axis_xfer_req = 1'b0;
assign rewind_req_valid = 1'b0;
assign rewind_req_data = 'h0;
assign req_rewind_req_valid = 'b0;
assign req_rewind_req_data = 'h0;
assign src_partial_burst = 1'b0;
assign block_descr_to_dst = 1'b0;
end
if (DMA_TYPE_SRC == DMA_TYPE_FIFO) begin
wire src_eot = eot_mem_src[src_response_id];
assign source_id = src_response_id;
assign source_eot = src_eot;
assign src_clk = fifo_wr_clk;
assign src_ext_resetn = 1'b1;
assign dbg_src_address_id = 'h00;
assign dbg_src_data_id = 'h00;
/* TODO
assign src_response_valid = 1'b0;
assign src_response_resp = 2'b0;
*/
dmac_src_fifo_inf #(
.ID_WIDTH(ID_WIDTH),
.DATA_WIDTH(DMA_DATA_WIDTH_SRC),
.BEATS_PER_BURST_WIDTH(BEATS_PER_BURST_WIDTH_SRC)
) i_src_dma_fifo (
.clk(fifo_wr_clk),
.resetn(src_resetn),
.enable(src_enable),
.enabled(src_enabled),
.req_valid(src_req_valid),
.req_ready(src_req_ready),
.req_last_burst_length(src_req_last_burst_length),
.req_sync_transfer_start(src_req_sync_transfer_start),
.request_id(src_throttled_request_id),
.response_id(src_response_id),
.eot(src_eot),
.bl_valid(src_bl_valid),
.bl_ready(src_bl_ready),
.measured_last_burst_length(src_burst_length),
.fifo_valid(src_valid),
.fifo_data(src_data),
.fifo_last(src_last),
.en(fifo_wr_en),
.din(fifo_wr_din),
.overflow(fifo_wr_overflow),
.sync(fifo_wr_sync),
.xfer_req(fifo_wr_xfer_req)
);
assign src_valid_bytes = {BYTES_PER_BEAT_WIDTH_SRC{1'b1}};
end else begin
assign fifo_wr_overflow = 1'b0;
assign fifo_wr_xfer_req = 1'b0;
end endgenerate
sync_bits #(
.NUM_OF_BITS(ID_WIDTH),
.ASYNC_CLK(ASYNC_CLK_REQ_SRC)
) i_sync_src_request_id (
.out_clk(src_clk),
.out_resetn(1'b1),
.in_bits(request_id),
.out_bits(src_request_id)
);
`include "inc_id.vh"
function compare_id;
input [ID_WIDTH-1:0] a;
input [ID_WIDTH-1:0] b;
begin
compare_id = a[ID_WIDTH-1] == b[ID_WIDTH-1];
if (ID_WIDTH >= 2) begin
if (a[ID_WIDTH-2] == b[ID_WIDTH-2]) begin
compare_id = 1'b1;
end
end
if (ID_WIDTH >= 3) begin
if (a[ID_WIDTH-3:0] != b[ID_WIDTH-3:0]) begin
compare_id = 1'b1;
end
end
end
endfunction
sync_event #(.ASYNC_CLK(ASYNC_CLK_REQ_SRC)) sync_rewind (
.in_clk(req_clk),
.in_event(rewind_state),
.out_clk(src_clk),
.out_event(src_throttler_enable)
);
always @(posedge src_clk) begin
if (src_resetn == 1'b0) begin
src_throttler_enabled <= 'b1;
end else if (rewind_req_valid) begin
src_throttler_enabled <= 'b0;
end else if (src_throttler_enable) begin
src_throttler_enabled <= 'b1;
end
end
/*
* Make sure that we do not request more data than what fits into the
* store-and-forward burst memory.
* Throttler must be blocked during rewind since it does not tolerate
* a decrement of the request ID.
*/
always @(posedge src_clk) begin
if (src_resetn == 1'b0) begin
src_throttled_request_id <= 'h00;
end else if (rewind_req_valid) begin
src_throttled_request_id <= rewind_req_data[ID_WIDTH-1:0];
end else if (src_throttled_request_id != src_request_id &&
compare_id(src_throttled_request_id, src_data_request_id) &&
src_throttler_enabled) begin
src_throttled_request_id <= inc_id(src_throttled_request_id);
end
end
sync_bits #(
.NUM_OF_BITS(ID_WIDTH),
.ASYNC_CLK(ASYNC_CLK_DEST_REQ)
) i_sync_req_response_id (
.out_clk(req_clk),
.out_resetn(1'b1),
.in_bits(dest_response_id),
.out_bits(response_id)
);
axi_register_slice #(
.DATA_WIDTH(DMA_DATA_WIDTH_SRC + BYTES_PER_BEAT_WIDTH_SRC + 2),
.FORWARD_REGISTERED(AXI_SLICE_SRC),
.BACKWARD_REGISTERED(0)
) i_src_slice (
.clk(src_clk),
.resetn(src_resetn),
.s_axi_valid(src_valid),
.s_axi_ready(),
.s_axi_data({src_data,src_valid_bytes,src_last,src_partial_burst}),
.m_axi_valid(src_fifo_valid),
.m_axi_ready(1'b1), /* No backpressure */
.m_axi_data({src_fifo_data,src_fifo_valid_bytes,src_fifo_last,src_fifo_partial_burst})
);
axi_dmac_burst_memory #(
.DATA_WIDTH_SRC(DMA_DATA_WIDTH_SRC),
.DATA_WIDTH_DEST(DMA_DATA_WIDTH_DEST),
.ID_WIDTH(ID_WIDTH),
.MAX_BYTES_PER_BURST(MAX_BYTES_PER_BURST),
.ASYNC_CLK(ASYNC_CLK_SRC_DEST),
.BYTES_PER_BEAT_WIDTH_SRC(BYTES_PER_BEAT_WIDTH_SRC),
.BYTES_PER_BURST_WIDTH(BYTES_PER_BURST_WIDTH),
.DMA_LENGTH_ALIGN(DMA_LENGTH_ALIGN),
.ENABLE_DIAGNOSTICS_IF(ENABLE_DIAGNOSTICS_IF),
.ALLOW_ASYM_MEM(ALLOW_ASYM_MEM)
) i_store_and_forward (
.src_clk(src_clk),
.src_reset(~src_resetn),
.src_data_valid(src_fifo_valid),
.src_data(src_fifo_data),
.src_data_last(src_fifo_last),
.src_data_valid_bytes(src_fifo_valid_bytes),
.src_data_partial_burst(src_fifo_partial_burst),
.src_data_request_id(src_data_request_id),
.dest_clk(dest_clk),
.dest_reset(~dest_resetn),
.dest_data_valid(dest_fifo_valid),
.dest_data_ready(dest_fifo_ready),
.dest_data(dest_fifo_data),
.dest_data_last(dest_fifo_last),
.dest_data_strb(dest_fifo_strb),
.dest_burst_info_length(dest_burst_info_length),
.dest_burst_info_partial(dest_burst_info_partial),
.dest_burst_info_id(dest_burst_info_id),
.dest_burst_info_write(dest_burst_info_write),
.dest_request_id(dest_request_id),
.dest_data_request_id(dest_data_request_id),
.dest_data_response_id(dest_data_response_id),
.dest_diag_level_bursts(dest_diag_level_bursts)
);
axi_register_slice #(
.DATA_WIDTH(DMA_DATA_WIDTH_DEST + DMA_DATA_WIDTH_DEST / 8 + 1),
.FORWARD_REGISTERED(AXI_SLICE_DEST),
.BACKWARD_REGISTERED(AXI_SLICE_DEST)
) i_dest_slice (
.clk(dest_clk),
.resetn(dest_resetn),
.s_axi_valid(dest_fifo_valid),
.s_axi_ready(dest_fifo_ready),
.s_axi_data({
dest_fifo_last,
dest_fifo_strb,
dest_fifo_data
}),
.m_axi_valid(dest_valid),
.m_axi_ready(dest_ready),
.m_axi_data({
dest_last,
dest_strb,
dest_data
})
);
// Don't let the request generator run in advance more than one descriptor
// The descriptor FIFO should not block the start of the request generator
// since it becomes ready earlier.
assign req_gen_valid = req_valid & req_ready;
assign req_src_valid = req_valid & req_ready;
assign req_ready = req_gen_ready & req_src_ready;
util_axis_fifo #(
.DATA_WIDTH(DMA_ADDRESS_WIDTH_DEST + 1),
.ADDRESS_WIDTH(0),
.ASYNC_CLK(ASYNC_CLK_SRC_DEST)
) i_dest_req_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(src_dest_valid_hs_masked),
.s_axis_ready(src_dest_ready_hs),
.s_axis_empty(),
.s_axis_data({
src_req_dest_address_cur,
src_req_xlast_cur
}),
.s_axis_room(),
.m_axis_aclk(dest_clk),
.m_axis_aresetn(dest_resetn),
.m_axis_valid(dest_req_valid),
.m_axis_ready(dest_req_ready),
.m_axis_data({
dest_req_dest_address,
dest_req_xlast
}),
.m_axis_level()
);
util_axis_fifo #(
.DATA_WIDTH(DMA_ADDRESS_WIDTH_DEST + DMA_ADDRESS_WIDTH_SRC + BYTES_PER_BURST_WIDTH + 2),
.ADDRESS_WIDTH(0),
.ASYNC_CLK(ASYNC_CLK_REQ_SRC)
) i_src_req_fifo (
.s_axis_aclk(req_clk),
.s_axis_aresetn(req_resetn),
.s_axis_valid(req_src_valid),
.s_axis_ready(req_src_ready),
.s_axis_empty(),
.s_axis_data({
req_dest_address,
req_src_address,
req_length[BYTES_PER_BURST_WIDTH-1:0],
req_sync_transfer_start,
req_xlast
}),
.s_axis_room(),
.m_axis_aclk(src_clk),
.m_axis_aresetn(src_resetn),
.m_axis_valid(src_req_spltr_valid),
.m_axis_ready(src_req_spltr_ready),
.m_axis_data({
src_req_dest_address,
src_req_src_address,
src_req_last_burst_length,
src_req_last_beat_bytes,
src_req_sync_transfer_start,
src_req_xlast
}),
.m_axis_level()
);
// Save the descriptor in the source clock domain since the submission to
// destination is delayed.
always @(posedge src_clk) begin
if (src_req_valid == 1'b1 && src_req_ready == 1'b1) begin
src_req_dest_address_cur <= src_req_dest_address;
src_req_xlast_cur <= src_req_xlast;
end
end
always @(posedge src_clk) begin
if (src_resetn == 1'b0) begin
src_dest_valid_hs <= 1'b0;
end else if (src_req_valid == 1'b1 && src_req_ready == 1'b1) begin
src_dest_valid_hs <= 1'b1;
end else if (src_dest_ready_hs == 1'b1) begin
src_dest_valid_hs <= 1'b0;
end
end
// Forward the descriptor to the destination only after the source decided to
// do so
assign src_dest_valid_hs_masked = src_dest_valid_hs == 1'b1 && block_descr_to_dst == 1'b0;
assign src_req_spltr_ready = src_req_ready && src_dest_ready_hs;
assign src_req_valid = src_req_spltr_valid && src_req_spltr_ready;
/* Unused for now
util_axis_fifo #(
.DATA_WIDTH(2),
.ADDRESS_WIDTH(0),
.ASYNC_CLK(ASYNC_CLK_REQ_SRC)
) i_src_response_fifo (
.s_axis_aclk(src_clk),
.s_axis_aresetn(src_resetn),
.s_axis_valid(src_response_valid),
.s_axis_ready(src_response_ready),
.s_axis_empty(src_response_empty),
.s_axis_data(src_response_resp),
.m_axis_aclk(req_clk),
.m_axis_aresetn(req_resetn),
.m_axis_valid(response_src_valid),
.m_axis_ready(response_src_ready),
.m_axis_data(response_src_resp)
);
assign src_response_empty = 1'b1;
assign src_response_ready = 1'b1;
*/
dmac_request_generator #(
.ID_WIDTH(ID_WIDTH),
.BURSTS_PER_TRANSFER_WIDTH(BURSTS_PER_TRANSFER_WIDTH)
) i_req_gen (
.clk(req_clk),
.resetn(req_resetn),
.request_id(request_id),
.response_id(response_id),
.rewind_req_valid(req_rewind_req_valid),
.rewind_req_ready(req_rewind_req_ready),
.rewind_req_data(req_rewind_req_data),
.rewind_state(rewind_state),
.abort_req(abort_req),
.completion_req_valid(completion_req_valid),
.completion_req_ready(completion_req_ready),
.completion_req_last(completion_req_last),
.completion_transfer_id(completion_transfer_id),
.req_valid(req_gen_valid),
.req_ready(req_gen_ready),
.req_burst_count(req_length[DMA_LENGTH_WIDTH-1:BYTES_PER_BURST_WIDTH]),
.req_xlast(req_xlast),
.enable(req_enable),
.eot(request_eot)
);
axi_dmac_response_manager #(
.DMA_DATA_WIDTH_SRC(DMA_DATA_WIDTH_SRC),
.DMA_DATA_WIDTH_DEST(DMA_DATA_WIDTH_DEST),
.DMA_LENGTH_WIDTH(DMA_LENGTH_WIDTH),
.BYTES_PER_BURST_WIDTH(BYTES_PER_BURST_WIDTH),
.BYTES_PER_BEAT_WIDTH_SRC(BYTES_PER_BEAT_WIDTH_SRC),
.ASYNC_CLK_DEST_REQ(ASYNC_CLK_DEST_REQ)
) i_response_manager(
.dest_clk(dest_clk),
.dest_resetn(dest_resetn),
.dest_response_valid(dest_response_valid),
.dest_response_ready(dest_response_ready),
.dest_response_resp(dest_response_resp),
.dest_response_partial(dest_response_partial),
.dest_response_resp_eot(dest_response_resp_eot),
.dest_response_data_burst_length(dest_response_data_burst_length),
.req_clk(req_clk),
.req_resetn(req_resetn),
.response_eot(eot),
.measured_burst_length(measured_burst_length),
.response_partial(response_partial),
.response_valid(response_valid),
.response_ready(response_ready),
.completion_req_valid(completion_req_valid),
.completion_req_ready(completion_req_ready),
.completion_req_last(completion_req_last),
.completion_transfer_id(completion_transfer_id)
);
endmodule