pluto_hdl_adi/library/axi_ad5766/axi_ad5766.v

422 lines
14 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2011(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_ad5766 #(
parameter ASYNC_SPI_CLK = 0,
parameter CMD_MEM_ADDRESS_WIDTH = 4,
parameter SDO_MEM_ADDRESS_WIDTH = 4)(
// Slave AXI interface
input s_axi_aclk,
input s_axi_aresetn,
input s_axi_awvalid,
input [31:0] s_axi_awaddr,
output s_axi_awready,
input [ 2:0] s_axi_awprot,
input s_axi_wvalid,
input [31:0] s_axi_wdata,
input [ 3:0] s_axi_wstrb,
output s_axi_wready,
output s_axi_bvalid,
output [ 1:0] s_axi_bresp,
input s_axi_bready,
input s_axi_arvalid,
input [31:0] s_axi_araddr,
output s_axi_arready,
input [ 2:0] s_axi_arprot,
output s_axi_rvalid,
input s_axi_rready,
output [ 1:0] s_axi_rresp,
output [31:0] s_axi_rdata,
// FIFO transmit
output dma_clk,
output reg dma_valid,
input dma_enable,
input [15:0] dma_data,
input dma_xfer_req,
input dma_underflow,
// SPI engine control interface (to the SPI engine interconnect)
input spi_clk, // should be connected to up_clk
input spi_resetn,
input cmd_ready,
output cmd_valid,
output [15:0] cmd_data,
input sdo_data_ready,
output sdo_data_valid,
output [ 7:0] sdo_data,
output sdi_data_ready,
input sdi_data_valid,
input [ 7:0] sdi_data,
output sync_ready,
input sync_valid,
input [ 7:0] sync_data,
// SPI engine offload interface (to the AXI SPI engine)
input ctrl_clk,
input ctrl_cmd_wr_en,
input [15:0] ctrl_cmd_wr_data,
input ctrl_enable,
output ctrl_enabled,
input ctrl_mem_reset);
// internal wires
wire up_wreq_s;
wire [13:0] up_waddr_s;
wire [31:0] up_wdata_s;
wire up_rreq_s;
wire [13:0] up_raddr_s;
wire [31:0] up_rdata_s[0:1];
wire up_rack_s[0:1];
wire up_wack_s[0:1];
wire trigger_s;
wire [31:0] pulse_period_s;
wire [15:0] dac_datarate_s;
wire spi_reset;
wire spi_enable_s;
wire [ 3:0] sequencer[15:0];
wire [ 3:0] cmd_bits;
wire [ 3:0] end_of_sequence;
wire spi_mem_reset_s;
wire sequence_valid_s;
wire [ 7:0] sequence_data_s;
wire dac_rst_s;
wire dac_rstn_s;
wire [CMD_MEM_ADDRESS_WIDTH-1:0] spi_cmd_rd_addr_next;
// registers
reg [31:0] up_rdata = 32'b0;
reg up_rack = 0;
reg up_wack = 1'b0;
reg [15:0] cmd_mem[0:2**CMD_MEM_ADDRESS_WIDTH-1];
reg [ 7:0] sdo_mem[0:2];
reg [CMD_MEM_ADDRESS_WIDTH-1:0] ctrl_cmd_wr_addr = 'b0;
reg [CMD_MEM_ADDRESS_WIDTH-1:0] spi_cmd_rd_addr = 'b0;
reg [SDO_MEM_ADDRESS_WIDTH-1:0] ctrl_sdo_wr_addr = 'b0;
reg [SDO_MEM_ADDRESS_WIDTH-1:0] spi_sdo_rd_addr = 'b0;
reg spi_active = 1'b0;
assign up_rstn = s_axi_aresetn;
// the dma interface runs on SPI_CLK
assign dma_clk = spi_clk;
// command and SDO data offload
assign cmd_valid = spi_active;
assign cmd_data = cmd_mem[spi_cmd_rd_addr];
assign sdo_data_valid = spi_active;
assign sdo_data = sdo_mem[spi_sdo_rd_addr];
assign sync_ready = 1'b1;
assign sdi_data_ready = 1'b0;
generate if (ASYNC_SPI_CLK) begin
/*
* The synchronization circuit takes care that there are no glitches on the
* ctrl_enabled signal. ctrl_do_enable is asserted whenever ctrl_enable is
* asserted, but only deasserted once the signal has been synchronized back from
* the SPI domain. This makes sure that we can't end up in a state where the
* enable signal in the SPI domain is asserted, but neither enable nor enabled
* is asserted in the control domain.
*/
reg ctrl_do_enable = 1'b0;
wire ctrl_is_enabled;
reg spi_enabled = 1'b0;
always @(posedge ctrl_clk) begin
if (ctrl_enable == 1'b1) begin
ctrl_do_enable <= 1'b1;
end else if (ctrl_is_enabled == 1'b1) begin
ctrl_do_enable <= 1'b0;
end
end
assign ctrl_enabled = ctrl_is_enabled | ctrl_do_enable;
always @(posedge spi_clk) begin
spi_enabled <= spi_enable_s | spi_active;
end
sync_bits # (
.NUM_OF_BITS(1),
.ASYNC_CLK(1)
) i_sync_enable (
.in(ctrl_do_enable),
.out_clk(spi_clk),
.out_resetn(1'b1),
.out(spi_enable_s)
);
sync_bits # (
.NUM_OF_BITS(1),
.ASYNC_CLK(1)
) i_sync_enabled (
.in(spi_enabled),
.out_clk(ctrl_clk),
.out_resetn(1'b1),
.out(ctrl_is_enabled)
);
sync_bits # (
.NUM_OF_BITS(1),
.ASYNC_CLK(1)
) i_sync_mem_reset (
.in(ctrl_mem_reset),
.out_clk(spi_clk),
.out_resetn(1'b1),
.out(spi_mem_reset_s)
);
end else begin
assign spi_enable_s = ctrl_enable;
assign ctrl_enabled = spi_enable_s | spi_active;
assign spi_mem_reset_s = ctrl_mem_reset;
end endgenerate
assign spi_cmd_rd_addr_next = spi_cmd_rd_addr + 1;
always @(posedge spi_clk) begin
if (spi_resetn == 1'b0) begin
spi_active <= 1'b0;
end else begin
if (spi_active == 1'b0) begin
if ((trigger_s == 1'b1 && spi_enable_s == 1'b1)) begin
spi_active <= 1'b1;
end
end else if (cmd_ready == 1'b1 && spi_cmd_rd_addr_next == ctrl_cmd_wr_addr) begin
spi_active <= 1'b0;
end
end
end
always @(posedge spi_clk) begin
if (cmd_valid == 1'b0) begin
spi_cmd_rd_addr <= 'h00;
end else if (cmd_ready == 1'b1) begin
spi_cmd_rd_addr <= spi_cmd_rd_addr_next;
end
end
always @(posedge spi_clk) begin
if (spi_active == 1'b0) begin
spi_sdo_rd_addr <= 'h00;
end else if (sdo_data_ready == 1'b1) begin
spi_sdo_rd_addr <= spi_sdo_rd_addr + 1'b1;
end
end
always @(posedge ctrl_clk) begin
if (ctrl_cmd_wr_en == 1'b1) begin
cmd_mem[ctrl_cmd_wr_addr] <= ctrl_cmd_wr_data;
end
end
always @(posedge ctrl_clk) begin
if (ctrl_mem_reset == 1'b1) begin
ctrl_cmd_wr_addr <= 0;
end else if (ctrl_cmd_wr_en == 1'b1) begin
ctrl_cmd_wr_addr <= ctrl_cmd_wr_addr + 1;
end
end
// request data from the DMA at the desired rate
always @(posedge dma_clk) begin
if (dma_xfer_req == 1'b0) begin
dma_valid <= 1'b0;
end else begin
if ((trigger_s == 1'b1) && (dma_enable == 1'b1) && (spi_enable_s == 1'b1)) begin
dma_valid <= 1'b1;
end
if (dma_valid == 1'b1) begin
dma_valid <= 1'b0;
end
end
if (dma_valid == 1'b1) begin
sdo_mem[1] <= dma_data[15:8];
sdo_mem[2] <= dma_data[ 7:0];
end
if (sequence_valid_s == 1'b1) begin
sdo_mem[0] <= sequence_data_s;
end
end
// rate controller
assign dac_rstn_s = ~dac_rst_s;
util_pulse_gen #(.PULSE_WIDTH(1)) i_trigger_gen (
.clk (spi_clk),
.rstn (dac_rstn_s),
.pulse_period (pulse_period_s),
.pulse_period_en (1'b1),
.pulse (trigger_s)
);
// offset of the sequencer registers are 8'h40
always @(negedge up_rstn or posedge spi_clk) begin
if (up_rstn == 1'b0) begin
up_rdata <= 'd0;
up_rack <= 'd0;
up_wack <= 'd0;
end else begin
up_rdata <= up_rdata_s[0] | up_rdata_s[1];
up_rack <= up_rack_s[0] | up_rack_s[1];
up_wack <= up_wack_s[0] | up_wack_s[1];
end
end
// DAC common registermap
assign pulse_period_s = {16'h0, dac_datarate_s};
up_ad5766_sequencer #(
.SEQ_ID(4))
i_sequencer (
.sequence_clk (spi_clk),
.sequence_rst (spi_mem_reset_s),
.sequence_req (dma_valid),
.sequence_valid (sequence_valid_s),
.sequence_data (sequence_data_s),
.up_rstn (up_rstn),
.up_clk (spi_clk),
.up_wreq (up_wreq_s),
.up_waddr (up_waddr_s),
.up_wdata (up_wdata_s),
.up_wack (up_wack_s[1]),
.up_rreq (up_rreq_s),
.up_raddr (up_raddr_s),
.up_rdata (up_rdata_s[1]),
.up_rack (up_rack_s[1]));
up_dac_common #(
.COMMON_ID (0)
) i_dac_common (
.mmcm_rst (),
.dac_clk (spi_clk),
.dac_rst (dac_rst_s),
.dac_sync (),
.dac_frame (),
.dac_clksel (),
.dac_par_type (),
.dac_par_enb (),
.dac_r1_mode (),
.dac_datafmt (dac_datafmt),
.dac_datarate (dac_datarate_s),
.dac_status (),
.dac_status_ovf (),
.dac_status_unf (dma_underflow),
.dac_clk_ratio (32'b0),
.up_dac_ce (),
.up_drp_sel (),
.up_drp_wr (),
.up_drp_addr (),
.up_drp_wdata (),
.up_drp_rdata (16'b0),
.up_drp_ready (1'b0),
.up_drp_locked (1'b0),
.up_usr_chanmax (),
.dac_usr_chanmax (8'b0),
.up_dac_gpio_in (32'b0),
.up_dac_gpio_out (),
.up_rstn (up_rstn),
.up_clk (spi_clk),
.up_wreq (up_wreq_s),
.up_waddr (up_waddr_s),
.up_wdata (up_wdata_s),
.up_wack (up_wack_s[0]),
.up_rreq (up_rreq_s),
.up_raddr (up_raddr_s),
.up_rdata (up_rdata_s[0]),
.up_rack (up_rack_s[0]));
// AXI wrapper
up_axi #(
.ADDRESS_WIDTH (14)
) i_up_axi (
.up_rstn (up_rstn),
.up_clk (spi_clk),
.up_axi_awvalid (s_axi_awvalid),
.up_axi_awaddr (s_axi_awaddr),
.up_axi_awready (s_axi_awready),
.up_axi_wvalid (s_axi_wvalid),
.up_axi_wdata (s_axi_wdata),
.up_axi_wstrb (s_axi_wstrb),
.up_axi_wready (s_axi_wready),
.up_axi_bvalid (s_axi_bvalid),
.up_axi_bresp (s_axi_bresp),
.up_axi_bready (s_axi_bready),
.up_axi_arvalid (s_axi_arvalid),
.up_axi_araddr (s_axi_araddr),
.up_axi_arready (s_axi_arready),
.up_axi_rvalid (s_axi_rvalid),
.up_axi_rresp (s_axi_rresp),
.up_axi_rdata (s_axi_rdata),
.up_axi_rready (s_axi_rready),
.up_wreq (up_wreq_s),
.up_waddr (up_waddr_s),
.up_wdata (up_wdata_s),
.up_wack (up_wack),
.up_rreq (up_rreq_s),
.up_raddr (up_raddr_s),
.up_rdata (up_rdata),
.up_rack (up_rack));
endmodule