pluto_hdl_adi/library/common/ad_mul_u16.v

251 lines
9.5 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2011(c) Analog Devices, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// - Neither the name of Analog Devices, Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
// - The use of this software may or may not infringe the patent rights
// of one or more patent holders. This license does not release you
// from the requirement that you obtain separate licenses from these
// patent holders to use this software.
// - Use of the software either in source or binary form, must be run
// on or directly connected to an Analog Devices Inc. component.
//
// THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED.
//
// IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY
// RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// both inputs are considered unsigned 16 bits-
// ddata is delay matched generic data
`timescale 1ps/1ps
module ad_mul_u16 (
// data_p = data_a * data_b;
clk,
data_a,
data_b,
data_p,
// delay interface
ddata_in,
ddata_out);
// delayed data bus width
parameter DELAY_DATA_WIDTH = 16;
localparam DW = DELAY_DATA_WIDTH - 1;
// data_p = data_a * data_b;
input clk;
input [15:0] data_a;
input [15:0] data_b;
output [31:0] data_p;
// delay interface
input [DW:0] ddata_in;
output [DW:0] ddata_out;
// internal registers
reg [DW:0] ddata_in_d = 'd0;
reg [16:0] data_a_p = 'd0;
reg [16:0] data_a_n = 'd0;
reg [15:0] data_b_d = 'd0;
reg [DW:0] p1_ddata = 'd0;
reg [31:0] p1_data_p_0 = 'd0;
reg [31:0] p1_data_p_1 = 'd0;
reg [31:0] p1_data_p_2 = 'd0;
reg [31:0] p1_data_p_3 = 'd0;
reg [31:0] p1_data_p_4 = 'd0;
reg [31:0] p1_data_p_5 = 'd0;
reg [31:0] p1_data_p_6 = 'd0;
reg [31:0] p1_data_p_7 = 'd0;
reg [31:0] p1_data_p_8 = 'd0;
reg [DW:0] p2_ddata = 'd0;
reg [31:0] p2_data_p_0 = 'd0;
reg [31:0] p2_data_p_1 = 'd0;
reg [31:0] p2_data_p_2 = 'd0;
reg [31:0] p2_data_p_3 = 'd0;
reg [31:0] p2_data_p_4 = 'd0;
reg [DW:0] p3_ddata = 'd0;
reg [31:0] p3_data_p_0 = 'd0;
reg [31:0] p3_data_p_1 = 'd0;
reg [31:0] p3_data_p_2 = 'd0;
reg [DW:0] p4_ddata = 'd0;
reg [31:0] p4_data_p_0 = 'd0;
reg [31:0] p4_data_p_1 = 'd0;
reg [DW:0] ddata_out = 'd0;
reg [31:0] data_p = 'd0;
// internal signals
wire [16:0] data_a_p_17_s;
wire [16:0] data_a_n_17_s;
wire [31:0] p1_data_a_1p_s;
wire [31:0] p1_data_a_1n_s;
wire [31:0] p1_data_a_2p_s;
wire [31:0] p1_data_a_2n_s;
// pipe line stage 0, get the two's complement versions
assign data_a_p_17_s = {1'b0, data_a};
assign data_a_n_17_s = ~data_a_p_17_s + 1'b1;
always @(posedge clk) begin
ddata_in_d <= ddata_in;
data_a_p <= data_a_p_17_s;
data_a_n <= data_a_n_17_s;
data_b_d <= data_b;
end
// pipe line stage 1, get the partial products
assign p1_data_a_1p_s = {{15{data_a_p[16]}}, data_a_p};
assign p1_data_a_1n_s = {{15{data_a_n[16]}}, data_a_n};
assign p1_data_a_2p_s = {{14{data_a_p[16]}}, data_a_p, 1'b0};
assign p1_data_a_2n_s = {{14{data_a_n[16]}}, data_a_n, 1'b0};
always @(posedge clk) begin
p1_ddata <= ddata_in_d;
case (data_b_d[1:0])
2'b11: p1_data_p_0 <= p1_data_a_1n_s;
2'b10: p1_data_p_0 <= p1_data_a_2n_s;
2'b01: p1_data_p_0 <= p1_data_a_1p_s;
default: p1_data_p_0 <= 32'd0;
endcase
case (data_b_d[3:1])
3'b011: p1_data_p_1 <= {p1_data_a_2p_s[29:0], 2'd0};
3'b100: p1_data_p_1 <= {p1_data_a_2n_s[29:0], 2'd0};
3'b001: p1_data_p_1 <= {p1_data_a_1p_s[29:0], 2'd0};
3'b010: p1_data_p_1 <= {p1_data_a_1p_s[29:0], 2'd0};
3'b101: p1_data_p_1 <= {p1_data_a_1n_s[29:0], 2'd0};
3'b110: p1_data_p_1 <= {p1_data_a_1n_s[29:0], 2'd0};
default: p1_data_p_1 <= 32'd0;
endcase
case (data_b_d[5:3])
3'b011: p1_data_p_2 <= {p1_data_a_2p_s[27:0], 4'd0};
3'b100: p1_data_p_2 <= {p1_data_a_2n_s[27:0], 4'd0};
3'b001: p1_data_p_2 <= {p1_data_a_1p_s[27:0], 4'd0};
3'b010: p1_data_p_2 <= {p1_data_a_1p_s[27:0], 4'd0};
3'b101: p1_data_p_2 <= {p1_data_a_1n_s[27:0], 4'd0};
3'b110: p1_data_p_2 <= {p1_data_a_1n_s[27:0], 4'd0};
default: p1_data_p_2 <= 32'd0;
endcase
case (data_b_d[7:5])
3'b011: p1_data_p_3 <= {p1_data_a_2p_s[25:0], 6'd0};
3'b100: p1_data_p_3 <= {p1_data_a_2n_s[25:0], 6'd0};
3'b001: p1_data_p_3 <= {p1_data_a_1p_s[25:0], 6'd0};
3'b010: p1_data_p_3 <= {p1_data_a_1p_s[25:0], 6'd0};
3'b101: p1_data_p_3 <= {p1_data_a_1n_s[25:0], 6'd0};
3'b110: p1_data_p_3 <= {p1_data_a_1n_s[25:0], 6'd0};
default: p1_data_p_3 <= 32'd0;
endcase
case (data_b_d[9:7])
3'b011: p1_data_p_4 <= {p1_data_a_2p_s[23:0], 8'd0};
3'b100: p1_data_p_4 <= {p1_data_a_2n_s[23:0], 8'd0};
3'b001: p1_data_p_4 <= {p1_data_a_1p_s[23:0], 8'd0};
3'b010: p1_data_p_4 <= {p1_data_a_1p_s[23:0], 8'd0};
3'b101: p1_data_p_4 <= {p1_data_a_1n_s[23:0], 8'd0};
3'b110: p1_data_p_4 <= {p1_data_a_1n_s[23:0], 8'd0};
default: p1_data_p_4 <= 32'd0;
endcase
case (data_b_d[11:9])
3'b011: p1_data_p_5 <= {p1_data_a_2p_s[21:0], 10'd0};
3'b100: p1_data_p_5 <= {p1_data_a_2n_s[21:0], 10'd0};
3'b001: p1_data_p_5 <= {p1_data_a_1p_s[21:0], 10'd0};
3'b010: p1_data_p_5 <= {p1_data_a_1p_s[21:0], 10'd0};
3'b101: p1_data_p_5 <= {p1_data_a_1n_s[21:0], 10'd0};
3'b110: p1_data_p_5 <= {p1_data_a_1n_s[21:0], 10'd0};
default: p1_data_p_5 <= 32'd0;
endcase
case (data_b_d[13:11])
3'b011: p1_data_p_6 <= {p1_data_a_2p_s[19:0], 12'd0};
3'b100: p1_data_p_6 <= {p1_data_a_2n_s[19:0], 12'd0};
3'b001: p1_data_p_6 <= {p1_data_a_1p_s[19:0], 12'd0};
3'b010: p1_data_p_6 <= {p1_data_a_1p_s[19:0], 12'd0};
3'b101: p1_data_p_6 <= {p1_data_a_1n_s[19:0], 12'd0};
3'b110: p1_data_p_6 <= {p1_data_a_1n_s[19:0], 12'd0};
default: p1_data_p_6 <= 32'd0;
endcase
case (data_b_d[15:13])
3'b011: p1_data_p_7 <= {p1_data_a_2p_s[17:0], 14'd0};
3'b100: p1_data_p_7 <= {p1_data_a_2n_s[17:0], 14'd0};
3'b001: p1_data_p_7 <= {p1_data_a_1p_s[17:0], 14'd0};
3'b010: p1_data_p_7 <= {p1_data_a_1p_s[17:0], 14'd0};
3'b101: p1_data_p_7 <= {p1_data_a_1n_s[17:0], 14'd0};
3'b110: p1_data_p_7 <= {p1_data_a_1n_s[17:0], 14'd0};
default: p1_data_p_7 <= 32'd0;
endcase
case (data_b_d[15])
1'b1: p1_data_p_8 <= {p1_data_a_1p_s[15:0], 16'd0};
default: p1_data_p_8 <= 32'd0;
endcase
end
// pipe line stage 2, sum (intermediate 9 -> 5)
always @(posedge clk) begin
p2_ddata <= p1_ddata;
p2_data_p_0 <= p1_data_p_0 + p1_data_p_1;
p2_data_p_1 <= p1_data_p_2 + p1_data_p_3;
p2_data_p_2 <= p1_data_p_4 + p1_data_p_5;
p2_data_p_3 <= p1_data_p_6 + p1_data_p_7;
p2_data_p_4 <= p1_data_p_8;
end
// pipe line stage 3, sum (intermediate 5 -> 3)
always @(posedge clk) begin
p3_ddata <= p2_ddata;
p3_data_p_0 <= p2_data_p_0 + p2_data_p_4;
p3_data_p_1 <= p2_data_p_1 + p2_data_p_2;
p3_data_p_2 <= p2_data_p_3;
end
// pipe line stage 4, sum (intermediate 3 -> 2)
always @(posedge clk) begin
p4_ddata <= p3_ddata;
p4_data_p_0 <= p3_data_p_0 + p3_data_p_2;
p4_data_p_1 <= p3_data_p_1;
end
// piple line stage 5, output registers
always @(posedge clk) begin
ddata_out <= p4_ddata;
data_p <= p4_data_p_0 + p4_data_p_1;
end
endmodule
// ***************************************************************************
// ***************************************************************************