pluto_hdl_adi/library/axi_dmac/tb/axi_slave.v

114 lines
3.6 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright (C) 2018-2023 Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsibilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module axi_slave #(
parameter DATA_WIDTH = 32,
parameter ACCEPTANCE = 3,
parameter MIN_LATENCY = 16,
parameter MAX_LATENCY = 32
) (
input clk,
input reset,
input valid,
output ready,
input [31:0] addr,
input [7:0] len,
input [2:0] size,
input [1:0] burst,
input [2:0] prot,
input [3:0] cache,
output beat_stb,
input beat_ack,
output [31:0] beat_addr,
output beat_last
);
reg [31:0] timestamp = 'h00;
always @(posedge clk) begin
if (reset == 1'b1) begin
timestamp <= 'h00;
end else begin
timestamp <= timestamp + 1'b1;
end
end
reg [32+32+8-1:0] req_fifo[0:15];
reg [3:0] req_fifo_rd = 'h00;
reg [3:0] req_fifo_wr = 'h00;
wire [3:0] req_fifo_level = req_fifo_wr - req_fifo_rd;
assign ready = req_fifo_level < ACCEPTANCE;
always @(posedge clk) begin
if (reset == 1'b1) begin
req_fifo_wr <= 'h00;
end else begin
if (valid == 1'b1 && ready == 1'b1) begin
req_fifo[req_fifo_wr][71:40] <= timestamp + {$random} % (MAX_LATENCY - MIN_LATENCY + 1) + MIN_LATENCY;
req_fifo[req_fifo_wr][39:0] <= {addr,len};
req_fifo_wr <= req_fifo_wr + 1'b1;
end
end
end
reg [7:0] beat_counter = 'h00;
assign beat_stb = req_fifo_level != 0 && timestamp > req_fifo[req_fifo_rd][71:40];
assign beat_last = beat_stb ? beat_counter == req_fifo[req_fifo_rd][0+:8] : 1'b0;
assign beat_addr = req_fifo[req_fifo_rd][8+:32] + beat_counter * DATA_WIDTH / 8;
always @(posedge clk) begin
if (reset == 1'b1) begin
beat_counter <= 'h00;
req_fifo_rd <= 'h00;
end else begin
if (beat_ack == 1'b1) begin
if (beat_last == 1'b1) begin
beat_counter <= 'h00;
req_fifo_rd <= req_fifo_rd + 1'b1;
end else begin
beat_counter <= beat_counter + 1'b1;
end
end
end
end
endmodule