pluto_hdl_adi/library/altera/avl_dacfifo/avl_dacfifo.v

294 lines
10 KiB
Verilog

// ***************************************************************************
// ***************************************************************************
// Copyright 2014 - 2017 (c) Analog Devices, Inc. All rights reserved.
//
// In this HDL repository, there are many different and unique modules, consisting
// of various HDL (Verilog or VHDL) components. The individual modules are
// developed independently, and may be accompanied by separate and unique license
// terms.
//
// The user should read each of these license terms, and understand the
// freedoms and responsabilities that he or she has by using this source/core.
//
// This core is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
// A PARTICULAR PURPOSE.
//
// Redistribution and use of source or resulting binaries, with or without modification
// of this file, are permitted under one of the following two license terms:
//
// 1. The GNU General Public License version 2 as published by the
// Free Software Foundation, which can be found in the top level directory
// of this repository (LICENSE_GPL2), and also online at:
// <https://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
//
// OR
//
// 2. An ADI specific BSD license, which can be found in the top level directory
// of this repository (LICENSE_ADIBSD), and also on-line at:
// https://github.com/analogdevicesinc/hdl/blob/master/LICENSE_ADIBSD
// This will allow to generate bit files and not release the source code,
// as long as it attaches to an ADI device.
//
// ***************************************************************************
// ***************************************************************************
`timescale 1ns/100ps
module avl_dacfifo #(
parameter DAC_DATA_WIDTH = 64,
parameter DMA_DATA_WIDTH = 64,
parameter AVL_DATA_WIDTH = 512,
parameter AVL_ADDRESS_WIDTH = 25,
parameter AVL_BASE_ADDRESS = 32'h00000000,
parameter AVL_ADDRESS_LIMIT = 32'h1fffffff) (
// dma interface
input dma_clk,
input dma_rst,
input dma_valid,
input [(DMA_DATA_WIDTH-1):0] dma_data,
output reg dma_ready,
input dma_xfer_req,
input dma_xfer_last,
// dac interface
input dac_clk,
input dac_rst,
input dac_valid,
output reg [(DAC_DATA_WIDTH-1):0] dac_data,
output reg dac_dunf,
output dac_xfer_out,
input bypass,
// avalon interface
input avl_clk,
input avl_reset,
output reg [(AVL_ADDRESS_WIDTH-1):0] avl_address,
output reg [ 6:0] avl_burstcount,
output reg [ 63:0] avl_byteenable,
output reg avl_read,
input [(AVL_DATA_WIDTH-1):0] avl_readdata,
input avl_readdata_valid,
input avl_ready,
output reg avl_write,
output reg [(AVL_DATA_WIDTH-1):0] avl_writedata);
localparam FIFO_BYPASS = (DAC_DATA_WIDTH == DMA_DATA_WIDTH) ? 1 : 0;
// internal register
reg dma_bypass_m1 = 1'b0;
reg dma_bypass = 1'b0;
reg dac_bypass_m1 = 1'b0;
reg dac_bypass = 1'b0;
reg dac_xfer_out_m1 = 1'b0;
reg dac_xfer_out_int = 1'b0;
reg dac_xfer_out_bypass = 1'b0;
reg avl_xfer_wren = 1'b0;
reg avl_dma_xfer_req = 1'b0;
reg avl_dma_xfer_req_m1 = 1'b0;
// internal signals
wire dma_ready_wr_s;
wire dma_ready_bypass_s;
wire avl_read_s;
wire avl_write_s;
wire [(AVL_DATA_WIDTH-1):0] avl_writedata_s;
wire [ 24:0] avl_wr_address_s;
wire [ 24:0] avl_rd_address_s;
wire [ 24:0] avl_last_address_s;
wire [ 63:0] avl_last_byteenable_s;
wire [ 5:0] avl_wr_burstcount_s;
wire [ 5:0] avl_rd_burstcount_s;
wire [ 63:0] avl_wr_byteenable_s;
wire [ 63:0] avl_rd_byteenable_s;
wire avl_xfer_out_s;
wire [(DAC_DATA_WIDTH-1):0] dac_data_fifo_s;
wire [(DAC_DATA_WIDTH-1):0] dac_data_bypass_s;
wire dac_xfer_fifo_out_s;
wire dac_dunf_fifo_s;
wire dac_dunf_bypass_s;
avl_dacfifo_wr #(
.AVL_DATA_WIDTH (AVL_DATA_WIDTH),
.DMA_DATA_WIDTH (DMA_DATA_WIDTH),
.AVL_DDR_BASE_ADDRESS (AVL_BASE_ADDRESS),
.DMA_MEM_ADDRESS_WIDTH(8)
) i_wr (
.dma_clk (dma_clk),
.dma_data (dma_data),
.dma_ready (dma_ready),
.dma_ready_out (dma_ready_wr_s),
.dma_valid (dma_valid),
.dma_xfer_req (dma_xfer_req),
.dma_xfer_last (dma_xfer_last),
.avl_last_address (avl_last_address_s),
.avl_last_byteenable (avl_last_byteenable_s),
.avl_clk (avl_clk),
.avl_reset (avl_reset),
.avl_address (avl_wr_address_s),
.avl_burstcount (avl_wr_burstcount_s),
.avl_byteenable (avl_wr_byteenable_s),
.avl_ready (avl_ready),
.avl_write (avl_write_s),
.avl_data (avl_writedata_s),
.avl_xfer_req (avl_xfer_out_s)
);
avl_dacfifo_rd #(
.AVL_DATA_WIDTH(AVL_DATA_WIDTH),
.DAC_DATA_WIDTH(DAC_DATA_WIDTH),
.AVL_DDR_BASE_ADDRESS(AVL_BASE_ADDRESS),
.AVL_DDR_ADDRESS_LIMIT(AVL_ADDRESS_LIMIT),
.DAC_MEM_ADDRESS_WIDTH(8)
) i_rd (
.dac_clk(dac_clk),
.dac_reset(dac_rst),
.dac_valid(dac_valid),
.dac_data(dac_data_fifo_s),
.dac_xfer_req(dac_xfer_fifo_out_s),
.dac_dunf(dac_dunf_fifo_s),
.avl_clk(avl_clk),
.avl_reset(avl_reset),
.avl_address(avl_rd_address_s),
.avl_burstcount(avl_rd_burstcount_s),
.avl_byteenable(avl_rd_byteenable_s),
.avl_ready(avl_ready),
.avl_readdatavalid(avl_readdata_valid),
.avl_read(avl_read_s),
.avl_data(avl_readdata),
.avl_last_address(avl_last_address_s),
.avl_last_byteenable(avl_last_byteenable_s),
.avl_xfer_req(avl_xfer_out_s));
// avalon address multiplexer and output registers
always @(posedge avl_clk) begin
avl_dma_xfer_req_m1 <= dma_xfer_req;
avl_dma_xfer_req <= avl_dma_xfer_req_m1;
end
always @(posedge avl_clk) begin
if (avl_reset == 1'b1) begin
avl_xfer_wren <= 1'b0;
end else begin
if (avl_dma_xfer_req == 1'b1) begin
avl_xfer_wren <= 1'b1;
end
if (avl_xfer_out_s == 1'b1) begin
avl_xfer_wren <= 1'b0;
end
end
end
always @(posedge avl_clk) begin
if (avl_reset == 1'b1) begin
avl_address <= 0;
avl_burstcount <= 0;
avl_byteenable <= 0;
avl_read <= 0;
avl_write <= 0;
avl_writedata <= 0;
end else begin
avl_address <= (avl_xfer_wren == 1'b1) ? avl_wr_address_s : avl_rd_address_s;
avl_burstcount <= (avl_xfer_wren == 1'b1) ? avl_wr_burstcount_s : avl_rd_burstcount_s;
avl_byteenable <= (avl_xfer_wren == 1'b1) ? avl_wr_byteenable_s : avl_rd_byteenable_s;
avl_read <= avl_read_s;
avl_write <= avl_write_s;
avl_writedata <= avl_writedata_s;
end
end
// bypass logic -- supported if DAC_DATA_WIDTH == DMA_DATA_WIDTH
generate
if (FIFO_BYPASS) begin
util_dacfifo_bypass #(
.DAC_DATA_WIDTH (DAC_DATA_WIDTH),
.DMA_DATA_WIDTH (DMA_DATA_WIDTH)
) i_dacfifo_bypass (
.dma_clk(dma_clk),
.dma_data(dma_data),
.dma_ready(dma_ready),
.dma_ready_out(dma_ready_bypass_s),
.dma_valid(dma_valid),
.dma_xfer_req(dma_xfer_req),
.dac_clk(dac_clk),
.dac_rst(dac_rst),
.dac_valid(dac_valid),
.dac_data(dac_data_bypass_s),
.dac_dunf(dac_dunf_bypass_s)
);
always @(posedge dma_clk) begin
dma_bypass_m1 <= bypass;
dma_bypass <= dma_bypass_m1;
end
always @(posedge dac_clk) begin
dac_bypass_m1 <= bypass;
dac_bypass <= dac_bypass_m1;
dac_xfer_out_m1 <= dma_xfer_req;
dac_xfer_out_bypass <= dac_xfer_out_m1;
end
// mux for the dma_ready
always @(posedge dma_clk) begin
dma_ready <= (dma_bypass) ? dma_ready_bypass_s : dma_ready_wr_s;
end
// mux for dac data
always @(posedge dac_clk) begin
if (dac_valid) begin
dac_data <= (dac_bypass) ? dac_data_bypass_s : dac_data_fifo_s;
end
dac_xfer_out_int <= (dac_bypass) ? dac_xfer_out_bypass : dac_xfer_fifo_out_s;
dac_dunf <= (dac_bypass) ? dac_dunf_bypass_s : dac_dunf_fifo_s;
end
end else begin /* if (~FIFO_BYPASS) */
always @(posedge dma_clk) begin
dma_ready <= dma_ready_wr_s;
end
always @(posedge dac_clk) begin
if (dac_valid) begin
dac_data <= dac_data_fifo_s;
end
dac_xfer_out_int <= dac_xfer_fifo_out_s;
dac_dunf <= dac_dunf_fifo_s;
end
end
endgenerate
// the ad_mem_asym memory read interface has a 3 clock cycle delay, from the
// moment of the address change until a valid data arrives on the bus;
// because the dac_xfer_out is going to validate the outgoing samples (in conjunction
// with the DAC VALID, which is free a running signal), this module will compensate
// this delay, to prevent duplicated samples in the beginning of the
// transaction
util_delay #(
.DATA_WIDTH(1),
.DELAY_CYCLES(3)
) i_delay (
.clk(dac_clk),
.reset(dac_rst),
.din(dac_xfer_out_int),
.dout(dac_xfer_out));
endmodule