1141 lines
28 KiB
C++
1141 lines
28 KiB
C++
|
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
||
|
* Qwt Widget Library
|
||
|
* Copyright (C) 1997 Josef Wilgen
|
||
|
* Copyright (C) 2002 Uwe Rathmann
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the Qwt License, Version 1.0
|
||
|
*****************************************************************************/
|
||
|
|
||
|
#include "qwt_scale_engine.h"
|
||
|
#include "qwt_math.h"
|
||
|
#include "qwt_scale_map.h"
|
||
|
#include <qalgorithms.h>
|
||
|
#include <qmath.h>
|
||
|
#include <float.h>
|
||
|
#include <limits>
|
||
|
|
||
|
#if QT_VERSION < 0x040601
|
||
|
#define qFabs(x) ::fabs(x)
|
||
|
#define qExp(x) ::exp(x)
|
||
|
#endif
|
||
|
|
||
|
static inline double qwtLog( double base, double value )
|
||
|
{
|
||
|
return log( value ) / log( base );
|
||
|
}
|
||
|
|
||
|
static inline QwtInterval qwtLogInterval( double base, const QwtInterval &interval )
|
||
|
{
|
||
|
return QwtInterval( qwtLog( base, interval.minValue() ),
|
||
|
qwtLog( base, interval.maxValue() ) );
|
||
|
}
|
||
|
|
||
|
static inline QwtInterval qwtPowInterval( double base, const QwtInterval &interval )
|
||
|
{
|
||
|
return QwtInterval( qPow( base, interval.minValue() ),
|
||
|
qPow( base, interval.maxValue() ) );
|
||
|
}
|
||
|
|
||
|
static inline long double qwtIntervalWidthL( const QwtInterval &interval )
|
||
|
{
|
||
|
if ( !interval.isValid() )
|
||
|
return 0.0;
|
||
|
|
||
|
return static_cast<long double>( interval.maxValue() )
|
||
|
- static_cast<long double>( interval.minValue() );
|
||
|
}
|
||
|
|
||
|
#if 1
|
||
|
|
||
|
// this version often doesn't find the best ticks: f.e for 15: 5, 10
|
||
|
static double qwtStepSize( double intervalSize, int maxSteps, uint base )
|
||
|
{
|
||
|
const double minStep =
|
||
|
QwtScaleArithmetic::divideInterval( intervalSize, maxSteps, base );
|
||
|
|
||
|
if ( minStep != 0.0 )
|
||
|
{
|
||
|
// # ticks per interval
|
||
|
const int numTicks = qCeil( qAbs( intervalSize / minStep ) ) - 1;
|
||
|
|
||
|
// Do the minor steps fit into the interval?
|
||
|
if ( qwtFuzzyCompare( ( numTicks + 1 ) * qAbs( minStep ),
|
||
|
qAbs( intervalSize ), intervalSize ) > 0 )
|
||
|
{
|
||
|
// The minor steps doesn't fit into the interval
|
||
|
return 0.5 * intervalSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return minStep;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static double qwtStepSize( double intervalSize, int maxSteps, uint base )
|
||
|
{
|
||
|
if ( maxSteps <= 0 )
|
||
|
return 0.0;
|
||
|
|
||
|
if ( maxSteps > 2 )
|
||
|
{
|
||
|
for ( int numSteps = maxSteps; numSteps > 1; numSteps-- )
|
||
|
{
|
||
|
const double stepSize = intervalSize / numSteps;
|
||
|
|
||
|
const double p = ::floor( ::log( stepSize ) / ::log( base ) );
|
||
|
const double fraction = qPow( base, p );
|
||
|
|
||
|
for ( uint n = base; n > 1; n /= 2 )
|
||
|
{
|
||
|
if ( qFuzzyCompare( stepSize, n * fraction ) )
|
||
|
return stepSize;
|
||
|
|
||
|
if ( n == 3 && ( base % 2 ) == 0 )
|
||
|
{
|
||
|
if ( qFuzzyCompare( stepSize, 2 * fraction ) )
|
||
|
return stepSize;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return intervalSize * 0.5;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static const double _eps = 1.0e-6;
|
||
|
|
||
|
/*!
|
||
|
Ceil a value, relative to an interval
|
||
|
|
||
|
\param value Value to be ceiled
|
||
|
\param intervalSize Interval size
|
||
|
|
||
|
\return Rounded value
|
||
|
|
||
|
\sa floorEps()
|
||
|
*/
|
||
|
double QwtScaleArithmetic::ceilEps( double value,
|
||
|
double intervalSize )
|
||
|
{
|
||
|
const double eps = _eps * intervalSize;
|
||
|
|
||
|
value = ( value - eps ) / intervalSize;
|
||
|
return ::ceil( value ) * intervalSize;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Floor a value, relative to an interval
|
||
|
|
||
|
\param value Value to be floored
|
||
|
\param intervalSize Interval size
|
||
|
|
||
|
\return Rounded value
|
||
|
\sa floorEps()
|
||
|
*/
|
||
|
double QwtScaleArithmetic::floorEps( double value, double intervalSize )
|
||
|
{
|
||
|
const double eps = _eps * intervalSize;
|
||
|
|
||
|
value = ( value + eps ) / intervalSize;
|
||
|
return ::floor( value ) * intervalSize;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Divide an interval into steps
|
||
|
|
||
|
\f$stepSize = (intervalSize - intervalSize * 10e^{-6}) / numSteps\f$
|
||
|
|
||
|
\param intervalSize Interval size
|
||
|
\param numSteps Number of steps
|
||
|
\return Step size
|
||
|
*/
|
||
|
double QwtScaleArithmetic::divideEps( double intervalSize, double numSteps )
|
||
|
{
|
||
|
if ( numSteps == 0.0 || intervalSize == 0.0 )
|
||
|
return 0.0;
|
||
|
|
||
|
return ( intervalSize - ( _eps * intervalSize ) ) / numSteps;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Calculate a step size for a given interval
|
||
|
|
||
|
\param intervalSize Interval size
|
||
|
\param numSteps Number of steps
|
||
|
\param base Base for the division ( usually 10 )
|
||
|
|
||
|
\return Calculated step size
|
||
|
*/
|
||
|
double QwtScaleArithmetic::divideInterval(
|
||
|
double intervalSize, int numSteps, uint base )
|
||
|
{
|
||
|
if ( numSteps <= 0 )
|
||
|
return 0.0;
|
||
|
|
||
|
const double v = QwtScaleArithmetic::divideEps( intervalSize, numSteps );
|
||
|
if ( v == 0.0 )
|
||
|
return 0.0;
|
||
|
|
||
|
const double lx = qwtLog( base, qFabs( v ) );
|
||
|
const double p = ::floor( lx );
|
||
|
|
||
|
const double fraction = qPow( base, lx - p );
|
||
|
|
||
|
uint n = base;
|
||
|
while ( ( n > 1 ) && ( fraction <= n / 2 ) )
|
||
|
n /= 2;
|
||
|
|
||
|
double stepSize = n * qPow( base, p );
|
||
|
if ( v < 0 )
|
||
|
stepSize = -stepSize;
|
||
|
|
||
|
return stepSize;
|
||
|
}
|
||
|
|
||
|
class QwtScaleEngine::PrivateData
|
||
|
{
|
||
|
public:
|
||
|
PrivateData():
|
||
|
attributes( QwtScaleEngine::NoAttribute ),
|
||
|
lowerMargin( 0.0 ),
|
||
|
upperMargin( 0.0 ),
|
||
|
referenceValue( 0.0 ),
|
||
|
base( 10 ),
|
||
|
transform( NULL )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
~PrivateData()
|
||
|
{
|
||
|
delete transform;
|
||
|
}
|
||
|
|
||
|
QwtScaleEngine::Attributes attributes;
|
||
|
|
||
|
double lowerMargin;
|
||
|
double upperMargin;
|
||
|
|
||
|
double referenceValue;
|
||
|
|
||
|
uint base;
|
||
|
|
||
|
QwtTransform* transform;
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
Constructor
|
||
|
|
||
|
\param base Base of the scale engine
|
||
|
\sa setBase()
|
||
|
*/
|
||
|
QwtScaleEngine::QwtScaleEngine( uint base )
|
||
|
{
|
||
|
d_data = new PrivateData;
|
||
|
setBase( base );
|
||
|
}
|
||
|
|
||
|
|
||
|
//! Destructor
|
||
|
QwtScaleEngine::~QwtScaleEngine ()
|
||
|
{
|
||
|
delete d_data;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Assign a transformation
|
||
|
|
||
|
\param transform Transformation
|
||
|
|
||
|
The transformation object is used as factory for clones
|
||
|
that are returned by transformation()
|
||
|
|
||
|
The scale engine takes ownership of the transformation.
|
||
|
|
||
|
\sa QwtTransform::copy(), transformation()
|
||
|
|
||
|
*/
|
||
|
void QwtScaleEngine::setTransformation( QwtTransform *transform )
|
||
|
{
|
||
|
if ( transform != d_data->transform )
|
||
|
{
|
||
|
delete d_data->transform;
|
||
|
d_data->transform = transform;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Create and return a clone of the transformation
|
||
|
of the engine. When the engine has no special transformation
|
||
|
NULL is returned, indicating no transformation.
|
||
|
|
||
|
\return A clone of the transfomation
|
||
|
\sa setTransformation()
|
||
|
*/
|
||
|
QwtTransform *QwtScaleEngine::transformation() const
|
||
|
{
|
||
|
QwtTransform *transform = NULL;
|
||
|
if ( d_data->transform )
|
||
|
transform = d_data->transform->copy();
|
||
|
|
||
|
return transform;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return the margin at the lower end of the scale
|
||
|
The default margin is 0.
|
||
|
|
||
|
\sa setMargins()
|
||
|
*/
|
||
|
double QwtScaleEngine::lowerMargin() const
|
||
|
{
|
||
|
return d_data->lowerMargin;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return the margin at the upper end of the scale
|
||
|
The default margin is 0.
|
||
|
|
||
|
\sa setMargins()
|
||
|
*/
|
||
|
double QwtScaleEngine::upperMargin() const
|
||
|
{
|
||
|
return d_data->upperMargin;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Specify margins at the scale's endpoints
|
||
|
\param lower minimum distance between the scale's lower boundary and the
|
||
|
smallest enclosed value
|
||
|
\param upper minimum distance between the scale's upper boundary and the
|
||
|
greatest enclosed value
|
||
|
|
||
|
Margins can be used to leave a minimum amount of space between
|
||
|
the enclosed intervals and the boundaries of the scale.
|
||
|
|
||
|
\warning
|
||
|
\li QwtLogScaleEngine measures the margins in decades.
|
||
|
|
||
|
\sa upperMargin(), lowerMargin()
|
||
|
*/
|
||
|
|
||
|
void QwtScaleEngine::setMargins( double lower, double upper )
|
||
|
{
|
||
|
d_data->lowerMargin = qMax( lower, 0.0 );
|
||
|
d_data->upperMargin = qMax( upper, 0.0 );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Calculate a step size for an interval size
|
||
|
|
||
|
\param intervalSize Interval size
|
||
|
\param numSteps Number of steps
|
||
|
|
||
|
\return Step size
|
||
|
*/
|
||
|
double QwtScaleEngine::divideInterval(
|
||
|
double intervalSize, int numSteps ) const
|
||
|
{
|
||
|
return QwtScaleArithmetic::divideInterval(
|
||
|
intervalSize, numSteps, d_data->base );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Check if an interval "contains" a value
|
||
|
|
||
|
\param interval Interval
|
||
|
\param value Value
|
||
|
|
||
|
\return True, when the value is inside the interval
|
||
|
*/
|
||
|
bool QwtScaleEngine::contains(
|
||
|
const QwtInterval &interval, double value ) const
|
||
|
{
|
||
|
if ( !interval.isValid() )
|
||
|
return false;
|
||
|
|
||
|
if ( qwtFuzzyCompare( value, interval.minValue(), interval.width() ) < 0 )
|
||
|
return false;
|
||
|
|
||
|
if ( qwtFuzzyCompare( value, interval.maxValue(), interval.width() ) > 0 )
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Remove ticks from a list, that are not inside an interval
|
||
|
|
||
|
\param ticks Tick list
|
||
|
\param interval Interval
|
||
|
|
||
|
\return Stripped tick list
|
||
|
*/
|
||
|
QList<double> QwtScaleEngine::strip( const QList<double>& ticks,
|
||
|
const QwtInterval &interval ) const
|
||
|
{
|
||
|
if ( !interval.isValid() || ticks.count() == 0 )
|
||
|
return QList<double>();
|
||
|
|
||
|
if ( contains( interval, ticks.first() )
|
||
|
&& contains( interval, ticks.last() ) )
|
||
|
{
|
||
|
return ticks;
|
||
|
}
|
||
|
|
||
|
QList<double> strippedTicks;
|
||
|
for ( int i = 0; i < ticks.count(); i++ )
|
||
|
{
|
||
|
if ( contains( interval, ticks[i] ) )
|
||
|
strippedTicks += ticks[i];
|
||
|
}
|
||
|
return strippedTicks;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Build an interval around a value
|
||
|
|
||
|
In case of v == 0.0 the interval is [-0.5, 0.5],
|
||
|
otherwide it is [0.5 * v, 1.5 * v]
|
||
|
|
||
|
\param value Initial value
|
||
|
\return Calculated interval
|
||
|
*/
|
||
|
|
||
|
QwtInterval QwtScaleEngine::buildInterval( double value ) const
|
||
|
{
|
||
|
const double delta = ( value == 0.0 ) ? 0.5 : qAbs( 0.5 * value );
|
||
|
|
||
|
if ( DBL_MAX - delta < value )
|
||
|
return QwtInterval( DBL_MAX - delta, DBL_MAX );
|
||
|
|
||
|
if ( -DBL_MAX + delta > value )
|
||
|
return QwtInterval( -DBL_MAX, -DBL_MAX + delta );
|
||
|
|
||
|
return QwtInterval( value - delta, value + delta );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Change a scale attribute
|
||
|
|
||
|
\param attribute Attribute to change
|
||
|
\param on On/Off
|
||
|
|
||
|
\sa Attribute, testAttribute()
|
||
|
*/
|
||
|
void QwtScaleEngine::setAttribute( Attribute attribute, bool on )
|
||
|
{
|
||
|
if ( on )
|
||
|
d_data->attributes |= attribute;
|
||
|
else
|
||
|
d_data->attributes &= ~attribute;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return True, if attribute is enabled.
|
||
|
|
||
|
\param attribute Attribute to be tested
|
||
|
\sa Attribute, setAttribute()
|
||
|
*/
|
||
|
bool QwtScaleEngine::testAttribute( Attribute attribute ) const
|
||
|
{
|
||
|
return ( d_data->attributes & attribute );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Change the scale attribute
|
||
|
|
||
|
\param attributes Set scale attributes
|
||
|
\sa Attribute, attributes()
|
||
|
*/
|
||
|
void QwtScaleEngine::setAttributes( Attributes attributes )
|
||
|
{
|
||
|
d_data->attributes = attributes;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Scale attributes
|
||
|
\sa Attribute, setAttributes(), testAttribute()
|
||
|
*/
|
||
|
QwtScaleEngine::Attributes QwtScaleEngine::attributes() const
|
||
|
{
|
||
|
return d_data->attributes;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Specify a reference point
|
||
|
\param r new reference value
|
||
|
|
||
|
The reference point is needed if options IncludeReference or
|
||
|
Symmetric are active. Its default value is 0.0.
|
||
|
|
||
|
\sa Attribute
|
||
|
*/
|
||
|
void QwtScaleEngine::setReference( double r )
|
||
|
{
|
||
|
d_data->referenceValue = r;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return the reference value
|
||
|
\sa setReference(), setAttribute()
|
||
|
*/
|
||
|
double QwtScaleEngine::reference() const
|
||
|
{
|
||
|
return d_data->referenceValue;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Set the base of the scale engine
|
||
|
|
||
|
While a base of 10 is what 99.9% of all applications need
|
||
|
certain scales might need a different base: f.e 2
|
||
|
|
||
|
The default setting is 10
|
||
|
|
||
|
\param base Base of the engine
|
||
|
|
||
|
\sa base()
|
||
|
*/
|
||
|
void QwtScaleEngine::setBase( uint base )
|
||
|
{
|
||
|
d_data->base = qMax( base, 2U );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return base Base of the scale engine
|
||
|
\sa setBase()
|
||
|
*/
|
||
|
uint QwtScaleEngine::base() const
|
||
|
{
|
||
|
return d_data->base;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Constructor
|
||
|
|
||
|
\param base Base of the scale engine
|
||
|
\sa setBase()
|
||
|
*/
|
||
|
QwtLinearScaleEngine::QwtLinearScaleEngine( uint base ):
|
||
|
QwtScaleEngine( base )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
QwtLinearScaleEngine::~QwtLinearScaleEngine()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Align and divide an interval
|
||
|
|
||
|
\param maxNumSteps Max. number of steps
|
||
|
\param x1 First limit of the interval (In/Out)
|
||
|
\param x2 Second limit of the interval (In/Out)
|
||
|
\param stepSize Step size (Out)
|
||
|
|
||
|
\sa setAttribute()
|
||
|
*/
|
||
|
void QwtLinearScaleEngine::autoScale( int maxNumSteps,
|
||
|
double &x1, double &x2, double &stepSize ) const
|
||
|
{
|
||
|
QwtInterval interval( x1, x2 );
|
||
|
interval = interval.normalized();
|
||
|
|
||
|
interval.setMinValue( interval.minValue() - lowerMargin() );
|
||
|
interval.setMaxValue( interval.maxValue() + upperMargin() );
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::Symmetric ) )
|
||
|
interval = interval.symmetrize( reference() );
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::IncludeReference ) )
|
||
|
interval = interval.extend( reference() );
|
||
|
|
||
|
if ( interval.width() == 0.0 )
|
||
|
interval = buildInterval( interval.minValue() );
|
||
|
|
||
|
stepSize = QwtScaleArithmetic::divideInterval(
|
||
|
interval.width(), qMax( maxNumSteps, 1 ), base() );
|
||
|
|
||
|
if ( !testAttribute( QwtScaleEngine::Floating ) )
|
||
|
interval = align( interval, stepSize );
|
||
|
|
||
|
x1 = interval.minValue();
|
||
|
x2 = interval.maxValue();
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::Inverted ) )
|
||
|
{
|
||
|
qSwap( x1, x2 );
|
||
|
stepSize = -stepSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate a scale division for an interval
|
||
|
|
||
|
\param x1 First interval limit
|
||
|
\param x2 Second interval limit
|
||
|
\param maxMajorSteps Maximum for the number of major steps
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param stepSize Step size. If stepSize == 0, the engine
|
||
|
calculates one.
|
||
|
|
||
|
\return Calculated scale division
|
||
|
*/
|
||
|
QwtScaleDiv QwtLinearScaleEngine::divideScale( double x1, double x2,
|
||
|
int maxMajorSteps, int maxMinorSteps, double stepSize ) const
|
||
|
{
|
||
|
QwtInterval interval = QwtInterval( x1, x2 ).normalized();
|
||
|
|
||
|
if ( qwtIntervalWidthL( interval ) > std::numeric_limits<double>::max() )
|
||
|
{
|
||
|
qWarning() << "QwtLinearScaleEngine::divideScale: overflow";
|
||
|
return QwtScaleDiv();
|
||
|
}
|
||
|
|
||
|
if ( interval.width() <= 0 )
|
||
|
return QwtScaleDiv();
|
||
|
|
||
|
stepSize = qAbs( stepSize );
|
||
|
if ( stepSize == 0.0 )
|
||
|
{
|
||
|
if ( maxMajorSteps < 1 )
|
||
|
maxMajorSteps = 1;
|
||
|
|
||
|
stepSize = QwtScaleArithmetic::divideInterval(
|
||
|
interval.width(), maxMajorSteps, base() );
|
||
|
}
|
||
|
|
||
|
QwtScaleDiv scaleDiv;
|
||
|
|
||
|
if ( stepSize != 0.0 )
|
||
|
{
|
||
|
QList<double> ticks[QwtScaleDiv::NTickTypes];
|
||
|
buildTicks( interval, stepSize, maxMinorSteps, ticks );
|
||
|
|
||
|
scaleDiv = QwtScaleDiv( interval, ticks );
|
||
|
}
|
||
|
|
||
|
if ( x1 > x2 )
|
||
|
scaleDiv.invert();
|
||
|
|
||
|
return scaleDiv;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate ticks for an interval
|
||
|
|
||
|
\param interval Interval
|
||
|
\param stepSize Step size
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param ticks Arrays to be filled with the calculated ticks
|
||
|
|
||
|
\sa buildMajorTicks(), buildMinorTicks
|
||
|
*/
|
||
|
void QwtLinearScaleEngine::buildTicks(
|
||
|
const QwtInterval& interval, double stepSize, int maxMinorSteps,
|
||
|
QList<double> ticks[QwtScaleDiv::NTickTypes] ) const
|
||
|
{
|
||
|
const QwtInterval boundingInterval = align( interval, stepSize );
|
||
|
|
||
|
ticks[QwtScaleDiv::MajorTick] =
|
||
|
buildMajorTicks( boundingInterval, stepSize );
|
||
|
|
||
|
if ( maxMinorSteps > 0 )
|
||
|
{
|
||
|
buildMinorTicks( ticks[QwtScaleDiv::MajorTick], maxMinorSteps, stepSize,
|
||
|
ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick] );
|
||
|
}
|
||
|
|
||
|
for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
|
||
|
{
|
||
|
ticks[i] = strip( ticks[i], interval );
|
||
|
|
||
|
// ticks very close to 0.0 are
|
||
|
// explicitely set to 0.0
|
||
|
|
||
|
for ( int j = 0; j < ticks[i].count(); j++ )
|
||
|
{
|
||
|
if ( qwtFuzzyCompare( ticks[i][j], 0.0, stepSize ) == 0 )
|
||
|
ticks[i][j] = 0.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate major ticks for an interval
|
||
|
|
||
|
\param interval Interval
|
||
|
\param stepSize Step size
|
||
|
|
||
|
\return Calculated ticks
|
||
|
*/
|
||
|
QList<double> QwtLinearScaleEngine::buildMajorTicks(
|
||
|
const QwtInterval &interval, double stepSize ) const
|
||
|
{
|
||
|
int numTicks = qRound( interval.width() / stepSize ) + 1;
|
||
|
if ( numTicks > 10000 )
|
||
|
numTicks = 10000;
|
||
|
|
||
|
QList<double> ticks;
|
||
|
|
||
|
ticks += interval.minValue();
|
||
|
for ( int i = 1; i < numTicks - 1; i++ )
|
||
|
ticks += interval.minValue() + i * stepSize;
|
||
|
ticks += interval.maxValue();
|
||
|
|
||
|
return ticks;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate minor/medium ticks for major ticks
|
||
|
|
||
|
\param majorTicks Major ticks
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param stepSize Step size
|
||
|
\param minorTicks Array to be filled with the calculated minor ticks
|
||
|
\param mediumTicks Array to be filled with the calculated medium ticks
|
||
|
|
||
|
*/
|
||
|
void QwtLinearScaleEngine::buildMinorTicks(
|
||
|
const QList<double>& majorTicks,
|
||
|
int maxMinorSteps, double stepSize,
|
||
|
QList<double> &minorTicks,
|
||
|
QList<double> &mediumTicks ) const
|
||
|
{
|
||
|
double minStep = qwtStepSize( stepSize, maxMinorSteps, base() );
|
||
|
if ( minStep == 0.0 )
|
||
|
return;
|
||
|
|
||
|
// # ticks per interval
|
||
|
const int numTicks = qCeil( qAbs( stepSize / minStep ) ) - 1;
|
||
|
|
||
|
int medIndex = -1;
|
||
|
if ( numTicks % 2 )
|
||
|
medIndex = numTicks / 2;
|
||
|
|
||
|
// calculate minor ticks
|
||
|
|
||
|
for ( int i = 0; i < majorTicks.count(); i++ )
|
||
|
{
|
||
|
double val = majorTicks[i];
|
||
|
for ( int k = 0; k < numTicks; k++ )
|
||
|
{
|
||
|
val += minStep;
|
||
|
|
||
|
double alignedValue = val;
|
||
|
if ( qwtFuzzyCompare( val, 0.0, stepSize ) == 0 )
|
||
|
alignedValue = 0.0;
|
||
|
|
||
|
if ( k == medIndex )
|
||
|
mediumTicks += alignedValue;
|
||
|
else
|
||
|
minorTicks += alignedValue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Align an interval to a step size
|
||
|
|
||
|
The limits of an interval are aligned that both are integer
|
||
|
multiples of the step size.
|
||
|
|
||
|
\param interval Interval
|
||
|
\param stepSize Step size
|
||
|
|
||
|
\return Aligned interval
|
||
|
*/
|
||
|
QwtInterval QwtLinearScaleEngine::align(
|
||
|
const QwtInterval &interval, double stepSize ) const
|
||
|
{
|
||
|
double x1 = interval.minValue();
|
||
|
double x2 = interval.maxValue();
|
||
|
|
||
|
// when there is no rounding beside some effect, when
|
||
|
// calculating with doubles, we keep the original value
|
||
|
|
||
|
const double eps = 0.000000000001; // since Qt 4.8: qFuzzyIsNull
|
||
|
if ( -DBL_MAX + stepSize <= x1 )
|
||
|
{
|
||
|
const double x = QwtScaleArithmetic::floorEps( x1, stepSize );
|
||
|
if ( qAbs(x) <= eps || !qFuzzyCompare( x1, x ) )
|
||
|
x1 = x;
|
||
|
}
|
||
|
|
||
|
if ( DBL_MAX - stepSize >= x2 )
|
||
|
{
|
||
|
const double x = QwtScaleArithmetic::ceilEps( x2, stepSize );
|
||
|
if ( qAbs(x) <= eps || !qFuzzyCompare( x2, x ) )
|
||
|
x2 = x;
|
||
|
}
|
||
|
|
||
|
return QwtInterval( x1, x2 );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Constructor
|
||
|
|
||
|
\param base Base of the scale engine
|
||
|
\sa setBase()
|
||
|
*/
|
||
|
QwtLogScaleEngine::QwtLogScaleEngine( uint base ):
|
||
|
QwtScaleEngine( base )
|
||
|
{
|
||
|
setTransformation( new QwtLogTransform() );
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
QwtLogScaleEngine::~QwtLogScaleEngine()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Align and divide an interval
|
||
|
|
||
|
\param maxNumSteps Max. number of steps
|
||
|
\param x1 First limit of the interval (In/Out)
|
||
|
\param x2 Second limit of the interval (In/Out)
|
||
|
\param stepSize Step size (Out)
|
||
|
|
||
|
\sa QwtScaleEngine::setAttribute()
|
||
|
*/
|
||
|
void QwtLogScaleEngine::autoScale( int maxNumSteps,
|
||
|
double &x1, double &x2, double &stepSize ) const
|
||
|
{
|
||
|
if ( x1 > x2 )
|
||
|
qSwap( x1, x2 );
|
||
|
|
||
|
const double logBase = base();
|
||
|
|
||
|
QwtInterval interval( x1 / qPow( logBase, lowerMargin() ),
|
||
|
x2 * qPow( logBase, upperMargin() ) );
|
||
|
|
||
|
if ( interval.maxValue() / interval.minValue() < logBase )
|
||
|
{
|
||
|
// scale width is less than one step -> try to build a linear scale
|
||
|
|
||
|
QwtLinearScaleEngine linearScaler;
|
||
|
linearScaler.setAttributes( attributes() );
|
||
|
linearScaler.setReference( reference() );
|
||
|
linearScaler.setMargins( lowerMargin(), upperMargin() );
|
||
|
|
||
|
linearScaler.autoScale( maxNumSteps, x1, x2, stepSize );
|
||
|
|
||
|
QwtInterval linearInterval = QwtInterval( x1, x2 ).normalized();
|
||
|
linearInterval = linearInterval.limited( LOG_MIN, LOG_MAX );
|
||
|
|
||
|
if ( linearInterval.maxValue() / linearInterval.minValue() < logBase )
|
||
|
{
|
||
|
// the aligned scale is still less than one step
|
||
|
|
||
|
#if 1
|
||
|
// this code doesn't make any sense, but for compatibility
|
||
|
// reasons we keep it until 6.2. But it will be ignored
|
||
|
// in divideScale
|
||
|
|
||
|
if ( stepSize < 0.0 )
|
||
|
stepSize = -qwtLog( logBase, qAbs( stepSize ) );
|
||
|
else
|
||
|
stepSize = qwtLog( logBase, stepSize );
|
||
|
#endif
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double logRef = 1.0;
|
||
|
if ( reference() > LOG_MIN / 2 )
|
||
|
logRef = qMin( reference(), LOG_MAX / 2 );
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::Symmetric ) )
|
||
|
{
|
||
|
const double delta = qMax( interval.maxValue() / logRef,
|
||
|
logRef / interval.minValue() );
|
||
|
interval.setInterval( logRef / delta, logRef * delta );
|
||
|
}
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::IncludeReference ) )
|
||
|
interval = interval.extend( logRef );
|
||
|
|
||
|
interval = interval.limited( LOG_MIN, LOG_MAX );
|
||
|
|
||
|
if ( interval.width() == 0.0 )
|
||
|
interval = buildInterval( interval.minValue() );
|
||
|
|
||
|
stepSize = divideInterval( qwtLogInterval( logBase, interval ).width(),
|
||
|
qMax( maxNumSteps, 1 ) );
|
||
|
if ( stepSize < 1.0 )
|
||
|
stepSize = 1.0;
|
||
|
|
||
|
if ( !testAttribute( QwtScaleEngine::Floating ) )
|
||
|
interval = align( interval, stepSize );
|
||
|
|
||
|
x1 = interval.minValue();
|
||
|
x2 = interval.maxValue();
|
||
|
|
||
|
if ( testAttribute( QwtScaleEngine::Inverted ) )
|
||
|
{
|
||
|
qSwap( x1, x2 );
|
||
|
stepSize = -stepSize;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate a scale division for an interval
|
||
|
|
||
|
\param x1 First interval limit
|
||
|
\param x2 Second interval limit
|
||
|
\param maxMajorSteps Maximum for the number of major steps
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param stepSize Step size. If stepSize == 0, the engine
|
||
|
calculates one.
|
||
|
|
||
|
\return Calculated scale division
|
||
|
*/
|
||
|
QwtScaleDiv QwtLogScaleEngine::divideScale( double x1, double x2,
|
||
|
int maxMajorSteps, int maxMinorSteps, double stepSize ) const
|
||
|
{
|
||
|
QwtInterval interval = QwtInterval( x1, x2 ).normalized();
|
||
|
interval = interval.limited( LOG_MIN, LOG_MAX );
|
||
|
|
||
|
if ( interval.width() <= 0 )
|
||
|
return QwtScaleDiv();
|
||
|
|
||
|
const double logBase = base();
|
||
|
|
||
|
if ( interval.maxValue() / interval.minValue() < logBase )
|
||
|
{
|
||
|
// scale width is less than one decade -> build linear scale
|
||
|
|
||
|
QwtLinearScaleEngine linearScaler;
|
||
|
linearScaler.setAttributes( attributes() );
|
||
|
linearScaler.setReference( reference() );
|
||
|
linearScaler.setMargins( lowerMargin(), upperMargin() );
|
||
|
|
||
|
return linearScaler.divideScale( x1, x2,
|
||
|
maxMajorSteps, maxMinorSteps, 0.0 );
|
||
|
}
|
||
|
|
||
|
stepSize = qAbs( stepSize );
|
||
|
if ( stepSize == 0.0 )
|
||
|
{
|
||
|
if ( maxMajorSteps < 1 )
|
||
|
maxMajorSteps = 1;
|
||
|
|
||
|
stepSize = divideInterval(
|
||
|
qwtLogInterval( logBase, interval ).width(), maxMajorSteps );
|
||
|
if ( stepSize < 1.0 )
|
||
|
stepSize = 1.0; // major step must be >= 1 decade
|
||
|
}
|
||
|
|
||
|
QwtScaleDiv scaleDiv;
|
||
|
if ( stepSize != 0.0 )
|
||
|
{
|
||
|
QList<double> ticks[QwtScaleDiv::NTickTypes];
|
||
|
buildTicks( interval, stepSize, maxMinorSteps, ticks );
|
||
|
|
||
|
scaleDiv = QwtScaleDiv( interval, ticks );
|
||
|
}
|
||
|
|
||
|
if ( x1 > x2 )
|
||
|
scaleDiv.invert();
|
||
|
|
||
|
return scaleDiv;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate ticks for an interval
|
||
|
|
||
|
\param interval Interval
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param stepSize Step size
|
||
|
\param ticks Arrays to be filled with the calculated ticks
|
||
|
|
||
|
\sa buildMajorTicks(), buildMinorTicks
|
||
|
*/
|
||
|
void QwtLogScaleEngine::buildTicks(
|
||
|
const QwtInterval& interval, double stepSize, int maxMinorSteps,
|
||
|
QList<double> ticks[QwtScaleDiv::NTickTypes] ) const
|
||
|
{
|
||
|
const QwtInterval boundingInterval = align( interval, stepSize );
|
||
|
|
||
|
ticks[QwtScaleDiv::MajorTick] =
|
||
|
buildMajorTicks( boundingInterval, stepSize );
|
||
|
|
||
|
if ( maxMinorSteps > 0 )
|
||
|
{
|
||
|
buildMinorTicks( ticks[QwtScaleDiv::MajorTick], maxMinorSteps, stepSize,
|
||
|
ticks[QwtScaleDiv::MinorTick], ticks[QwtScaleDiv::MediumTick] );
|
||
|
}
|
||
|
|
||
|
for ( int i = 0; i < QwtScaleDiv::NTickTypes; i++ )
|
||
|
ticks[i] = strip( ticks[i], interval );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate major ticks for an interval
|
||
|
|
||
|
\param interval Interval
|
||
|
\param stepSize Step size
|
||
|
|
||
|
\return Calculated ticks
|
||
|
*/
|
||
|
QList<double> QwtLogScaleEngine::buildMajorTicks(
|
||
|
const QwtInterval &interval, double stepSize ) const
|
||
|
{
|
||
|
double width = qwtLogInterval( base(), interval ).width();
|
||
|
|
||
|
int numTicks = qRound( width / stepSize ) + 1;
|
||
|
if ( numTicks > 10000 )
|
||
|
numTicks = 10000;
|
||
|
|
||
|
const double lxmin = ::log( interval.minValue() );
|
||
|
const double lxmax = ::log( interval.maxValue() );
|
||
|
const double lstep = ( lxmax - lxmin ) / double( numTicks - 1 );
|
||
|
|
||
|
QList<double> ticks;
|
||
|
|
||
|
ticks += interval.minValue();
|
||
|
|
||
|
for ( int i = 1; i < numTicks - 1; i++ )
|
||
|
ticks += qExp( lxmin + double( i ) * lstep );
|
||
|
|
||
|
ticks += interval.maxValue();
|
||
|
|
||
|
return ticks;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Calculate minor/medium ticks for major ticks
|
||
|
|
||
|
\param majorTicks Major ticks
|
||
|
\param maxMinorSteps Maximum number of minor steps
|
||
|
\param stepSize Step size
|
||
|
\param minorTicks Array to be filled with the calculated minor ticks
|
||
|
\param mediumTicks Array to be filled with the calculated medium ticks
|
||
|
*/
|
||
|
void QwtLogScaleEngine::buildMinorTicks(
|
||
|
const QList<double> &majorTicks,
|
||
|
int maxMinorSteps, double stepSize,
|
||
|
QList<double> &minorTicks,
|
||
|
QList<double> &mediumTicks ) const
|
||
|
{
|
||
|
const double logBase = base();
|
||
|
|
||
|
if ( stepSize < 1.1 ) // major step width is one base
|
||
|
{
|
||
|
double minStep = divideInterval( stepSize, maxMinorSteps + 1 );
|
||
|
if ( minStep == 0.0 )
|
||
|
return;
|
||
|
|
||
|
const int numSteps = qRound( stepSize / minStep );
|
||
|
|
||
|
int mediumTickIndex = -1;
|
||
|
if ( ( numSteps > 2 ) && ( numSteps % 2 == 0 ) )
|
||
|
mediumTickIndex = numSteps / 2;
|
||
|
|
||
|
for ( int i = 0; i < majorTicks.count() - 1; i++ )
|
||
|
{
|
||
|
const double v = majorTicks[i];
|
||
|
const double s = logBase / numSteps;
|
||
|
|
||
|
if ( s >= 1.0 )
|
||
|
{
|
||
|
if ( !qFuzzyCompare( s, 1.0 ) )
|
||
|
minorTicks += v * s;
|
||
|
|
||
|
for ( int j = 2; j < numSteps; j++ )
|
||
|
{
|
||
|
minorTicks += v * j * s;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for ( int j = 1; j < numSteps; j++ )
|
||
|
{
|
||
|
const double tick = v + j * v * ( logBase - 1 ) / numSteps;
|
||
|
if ( j == mediumTickIndex )
|
||
|
mediumTicks += tick;
|
||
|
else
|
||
|
minorTicks += tick;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double minStep = divideInterval( stepSize, maxMinorSteps );
|
||
|
if ( minStep == 0.0 )
|
||
|
return;
|
||
|
|
||
|
if ( minStep < 1.0 )
|
||
|
minStep = 1.0;
|
||
|
|
||
|
// # subticks per interval
|
||
|
int numTicks = qRound( stepSize / minStep ) - 1;
|
||
|
|
||
|
// Do the minor steps fit into the interval?
|
||
|
if ( qwtFuzzyCompare( ( numTicks + 1 ) * minStep,
|
||
|
stepSize, stepSize ) > 0 )
|
||
|
{
|
||
|
numTicks = 0;
|
||
|
}
|
||
|
|
||
|
if ( numTicks < 1 )
|
||
|
return;
|
||
|
|
||
|
int mediumTickIndex = -1;
|
||
|
if ( ( numTicks > 2 ) && ( numTicks % 2 ) )
|
||
|
mediumTickIndex = numTicks / 2;
|
||
|
|
||
|
// substep factor = base^substeps
|
||
|
const qreal minFactor = qMax( qPow( logBase, minStep ), qreal( logBase ) );
|
||
|
|
||
|
for ( int i = 0; i < majorTicks.count(); i++ )
|
||
|
{
|
||
|
double tick = majorTicks[i];
|
||
|
for ( int j = 0; j < numTicks; j++ )
|
||
|
{
|
||
|
tick *= minFactor;
|
||
|
|
||
|
if ( j == mediumTickIndex )
|
||
|
mediumTicks += tick;
|
||
|
else
|
||
|
minorTicks += tick;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\brief Align an interval to a step size
|
||
|
|
||
|
The limits of an interval are aligned that both are integer
|
||
|
multiples of the step size.
|
||
|
|
||
|
\param interval Interval
|
||
|
\param stepSize Step size
|
||
|
|
||
|
\return Aligned interval
|
||
|
*/
|
||
|
QwtInterval QwtLogScaleEngine::align(
|
||
|
const QwtInterval &interval, double stepSize ) const
|
||
|
{
|
||
|
const QwtInterval intv = qwtLogInterval( base(), interval );
|
||
|
|
||
|
double x1 = QwtScaleArithmetic::floorEps( intv.minValue(), stepSize );
|
||
|
if ( qwtFuzzyCompare( interval.minValue(), x1, stepSize ) == 0 )
|
||
|
x1 = interval.minValue();
|
||
|
|
||
|
double x2 = QwtScaleArithmetic::ceilEps( intv.maxValue(), stepSize );
|
||
|
if ( qwtFuzzyCompare( interval.maxValue(), x2, stepSize ) == 0 )
|
||
|
x2 = interval.maxValue();
|
||
|
|
||
|
return qwtPowInterval( base(), QwtInterval( x1, x2 ) );
|
||
|
}
|