455 lines
10 KiB
C++
455 lines
10 KiB
C++
|
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
||
|
* Qwt Widget Library
|
||
|
* Copyright (C) 1997 Josef Wilgen
|
||
|
* Copyright (C) 2002 Uwe Rathmann
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the Qwt License, Version 1.0
|
||
|
*****************************************************************************/
|
||
|
|
||
|
#include "qwt_curve_fitter.h"
|
||
|
#include "qwt_math.h"
|
||
|
#include "qwt_spline.h"
|
||
|
#include <qstack.h>
|
||
|
#include <qvector.h>
|
||
|
|
||
|
#if QT_VERSION < 0x040601
|
||
|
#define qFabs(x) ::fabs(x)
|
||
|
#endif
|
||
|
|
||
|
//! Constructor
|
||
|
QwtCurveFitter::QwtCurveFitter()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
QwtCurveFitter::~QwtCurveFitter()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
class QwtSplineCurveFitter::PrivateData
|
||
|
{
|
||
|
public:
|
||
|
PrivateData():
|
||
|
fitMode( QwtSplineCurveFitter::Auto ),
|
||
|
splineSize( 250 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
QwtSpline spline;
|
||
|
QwtSplineCurveFitter::FitMode fitMode;
|
||
|
int splineSize;
|
||
|
};
|
||
|
|
||
|
//! Constructor
|
||
|
QwtSplineCurveFitter::QwtSplineCurveFitter()
|
||
|
{
|
||
|
d_data = new PrivateData;
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
QwtSplineCurveFitter::~QwtSplineCurveFitter()
|
||
|
{
|
||
|
delete d_data;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Select the algorithm used for building the spline
|
||
|
|
||
|
\param mode Mode representing a spline algorithm
|
||
|
\sa fitMode()
|
||
|
*/
|
||
|
void QwtSplineCurveFitter::setFitMode( FitMode mode )
|
||
|
{
|
||
|
d_data->fitMode = mode;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Mode representing a spline algorithm
|
||
|
\sa setFitMode()
|
||
|
*/
|
||
|
QwtSplineCurveFitter::FitMode QwtSplineCurveFitter::fitMode() const
|
||
|
{
|
||
|
return d_data->fitMode;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Assign a spline
|
||
|
|
||
|
\param spline Spline
|
||
|
\sa spline()
|
||
|
*/
|
||
|
void QwtSplineCurveFitter::setSpline( const QwtSpline &spline )
|
||
|
{
|
||
|
d_data->spline = spline;
|
||
|
d_data->spline.reset();
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Spline
|
||
|
\sa setSpline()
|
||
|
*/
|
||
|
const QwtSpline &QwtSplineCurveFitter::spline() const
|
||
|
{
|
||
|
return d_data->spline;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Spline
|
||
|
\sa setSpline()
|
||
|
*/
|
||
|
QwtSpline &QwtSplineCurveFitter::spline()
|
||
|
{
|
||
|
return d_data->spline;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Assign a spline size ( has to be at least 10 points )
|
||
|
|
||
|
\param splineSize Spline size
|
||
|
\sa splineSize()
|
||
|
*/
|
||
|
void QwtSplineCurveFitter::setSplineSize( int splineSize )
|
||
|
{
|
||
|
d_data->splineSize = qMax( splineSize, 10 );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Spline size
|
||
|
\sa setSplineSize()
|
||
|
*/
|
||
|
int QwtSplineCurveFitter::splineSize() const
|
||
|
{
|
||
|
return d_data->splineSize;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Find a curve which has the best fit to a series of data points
|
||
|
|
||
|
\param points Series of data points
|
||
|
\return Curve points
|
||
|
*/
|
||
|
QPolygonF QwtSplineCurveFitter::fitCurve( const QPolygonF &points ) const
|
||
|
{
|
||
|
const int size = points.size();
|
||
|
if ( size <= 2 )
|
||
|
return points;
|
||
|
|
||
|
FitMode fitMode = d_data->fitMode;
|
||
|
if ( fitMode == Auto )
|
||
|
{
|
||
|
fitMode = Spline;
|
||
|
|
||
|
const QPointF *p = points.data();
|
||
|
for ( int i = 1; i < size; i++ )
|
||
|
{
|
||
|
if ( p[i].x() <= p[i-1].x() )
|
||
|
{
|
||
|
fitMode = ParametricSpline;
|
||
|
break;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
if ( fitMode == ParametricSpline )
|
||
|
return fitParametric( points );
|
||
|
else
|
||
|
return fitSpline( points );
|
||
|
}
|
||
|
|
||
|
QPolygonF QwtSplineCurveFitter::fitSpline( const QPolygonF &points ) const
|
||
|
{
|
||
|
d_data->spline.setPoints( points );
|
||
|
if ( !d_data->spline.isValid() )
|
||
|
return points;
|
||
|
|
||
|
QPolygonF fittedPoints( d_data->splineSize );
|
||
|
|
||
|
const double x1 = points[0].x();
|
||
|
const double x2 = points[int( points.size() - 1 )].x();
|
||
|
const double dx = x2 - x1;
|
||
|
const double delta = dx / ( d_data->splineSize - 1 );
|
||
|
|
||
|
for ( int i = 0; i < d_data->splineSize; i++ )
|
||
|
{
|
||
|
QPointF &p = fittedPoints[i];
|
||
|
|
||
|
const double v = x1 + i * delta;
|
||
|
const double sv = d_data->spline.value( v );
|
||
|
|
||
|
p.setX( v );
|
||
|
p.setY( sv );
|
||
|
}
|
||
|
d_data->spline.reset();
|
||
|
|
||
|
return fittedPoints;
|
||
|
}
|
||
|
|
||
|
QPolygonF QwtSplineCurveFitter::fitParametric( const QPolygonF &points ) const
|
||
|
{
|
||
|
int i;
|
||
|
const int size = points.size();
|
||
|
|
||
|
QPolygonF fittedPoints( d_data->splineSize );
|
||
|
QPolygonF splinePointsX( size );
|
||
|
QPolygonF splinePointsY( size );
|
||
|
|
||
|
const QPointF *p = points.data();
|
||
|
QPointF *spX = splinePointsX.data();
|
||
|
QPointF *spY = splinePointsY.data();
|
||
|
|
||
|
double param = 0.0;
|
||
|
for ( i = 0; i < size; i++ )
|
||
|
{
|
||
|
const double x = p[i].x();
|
||
|
const double y = p[i].y();
|
||
|
if ( i > 0 )
|
||
|
{
|
||
|
const double delta = qSqrt( qwtSqr( x - spX[i-1].y() )
|
||
|
+ qwtSqr( y - spY[i-1].y() ) );
|
||
|
param += qMax( delta, 1.0 );
|
||
|
}
|
||
|
spX[i].setX( param );
|
||
|
spX[i].setY( x );
|
||
|
spY[i].setX( param );
|
||
|
spY[i].setY( y );
|
||
|
}
|
||
|
|
||
|
d_data->spline.setPoints( splinePointsX );
|
||
|
if ( !d_data->spline.isValid() )
|
||
|
return points;
|
||
|
|
||
|
const double deltaX =
|
||
|
splinePointsX[size - 1].x() / ( d_data->splineSize - 1 );
|
||
|
for ( i = 0; i < d_data->splineSize; i++ )
|
||
|
{
|
||
|
const double dtmp = i * deltaX;
|
||
|
fittedPoints[i].setX( d_data->spline.value( dtmp ) );
|
||
|
}
|
||
|
|
||
|
d_data->spline.setPoints( splinePointsY );
|
||
|
if ( !d_data->spline.isValid() )
|
||
|
return points;
|
||
|
|
||
|
const double deltaY =
|
||
|
splinePointsY[size - 1].x() / ( d_data->splineSize - 1 );
|
||
|
for ( i = 0; i < d_data->splineSize; i++ )
|
||
|
{
|
||
|
const double dtmp = i * deltaY;
|
||
|
fittedPoints[i].setY( d_data->spline.value( dtmp ) );
|
||
|
}
|
||
|
|
||
|
return fittedPoints;
|
||
|
}
|
||
|
|
||
|
class QwtWeedingCurveFitter::PrivateData
|
||
|
{
|
||
|
public:
|
||
|
PrivateData():
|
||
|
tolerance( 1.0 ),
|
||
|
chunkSize( 0 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
double tolerance;
|
||
|
uint chunkSize;
|
||
|
};
|
||
|
|
||
|
class QwtWeedingCurveFitter::Line
|
||
|
{
|
||
|
public:
|
||
|
Line( int i1 = 0, int i2 = 0 ):
|
||
|
from( i1 ),
|
||
|
to( i2 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
int from;
|
||
|
int to;
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
Constructor
|
||
|
|
||
|
\param tolerance Tolerance
|
||
|
\sa setTolerance(), tolerance()
|
||
|
*/
|
||
|
QwtWeedingCurveFitter::QwtWeedingCurveFitter( double tolerance )
|
||
|
{
|
||
|
d_data = new PrivateData;
|
||
|
setTolerance( tolerance );
|
||
|
}
|
||
|
|
||
|
//! Destructor
|
||
|
QwtWeedingCurveFitter::~QwtWeedingCurveFitter()
|
||
|
{
|
||
|
delete d_data;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Assign the tolerance
|
||
|
|
||
|
The tolerance is the maximum distance, that is acceptable
|
||
|
between the original curve and the smoothed curve.
|
||
|
|
||
|
Increasing the tolerance will reduce the number of the
|
||
|
resulting points.
|
||
|
|
||
|
\param tolerance Tolerance
|
||
|
|
||
|
\sa tolerance()
|
||
|
*/
|
||
|
void QwtWeedingCurveFitter::setTolerance( double tolerance )
|
||
|
{
|
||
|
d_data->tolerance = qMax( tolerance, 0.0 );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Tolerance
|
||
|
\sa setTolerance()
|
||
|
*/
|
||
|
double QwtWeedingCurveFitter::tolerance() const
|
||
|
{
|
||
|
return d_data->tolerance;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Limit the number of points passed to a run of the algorithm
|
||
|
|
||
|
The runtime of the Douglas Peucker algorithm increases non linear
|
||
|
with the number of points. For a chunk size > 0 the polygon
|
||
|
is split into pieces passed to the algorithm one by one.
|
||
|
|
||
|
\param numPoints Maximum for the number of points passed to the algorithm
|
||
|
|
||
|
\sa chunkSize()
|
||
|
*/
|
||
|
void QwtWeedingCurveFitter::setChunkSize( uint numPoints )
|
||
|
{
|
||
|
if ( numPoints > 0 )
|
||
|
numPoints = qMax( numPoints, 3U );
|
||
|
|
||
|
d_data->chunkSize = numPoints;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\return Maximum for the number of points passed to a run
|
||
|
of the algorithm - or 0, when unlimited
|
||
|
\sa setChunkSize()
|
||
|
*/
|
||
|
uint QwtWeedingCurveFitter::chunkSize() const
|
||
|
{
|
||
|
return d_data->chunkSize;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
\param points Series of data points
|
||
|
\return Curve points
|
||
|
*/
|
||
|
QPolygonF QwtWeedingCurveFitter::fitCurve( const QPolygonF &points ) const
|
||
|
{
|
||
|
if ( points.isEmpty() )
|
||
|
return points;
|
||
|
|
||
|
QPolygonF fittedPoints;
|
||
|
if ( d_data->chunkSize == 0 )
|
||
|
{
|
||
|
fittedPoints = simplify( points );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for ( int i = 0; i < points.size(); i += d_data->chunkSize )
|
||
|
{
|
||
|
const QPolygonF p = points.mid( i, d_data->chunkSize );
|
||
|
fittedPoints += simplify( p );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return fittedPoints;
|
||
|
}
|
||
|
|
||
|
QPolygonF QwtWeedingCurveFitter::simplify( const QPolygonF &points ) const
|
||
|
{
|
||
|
const double toleranceSqr = d_data->tolerance * d_data->tolerance;
|
||
|
|
||
|
QStack<Line> stack;
|
||
|
stack.reserve( 500 );
|
||
|
|
||
|
const QPointF *p = points.data();
|
||
|
const int nPoints = points.size();
|
||
|
|
||
|
QVector<bool> usePoint( nPoints, false );
|
||
|
|
||
|
stack.push( Line( 0, nPoints - 1 ) );
|
||
|
|
||
|
while ( !stack.isEmpty() )
|
||
|
{
|
||
|
const Line r = stack.pop();
|
||
|
|
||
|
// initialize line segment
|
||
|
const double vecX = p[r.to].x() - p[r.from].x();
|
||
|
const double vecY = p[r.to].y() - p[r.from].y();
|
||
|
|
||
|
const double vecLength = qSqrt( vecX * vecX + vecY * vecY );
|
||
|
|
||
|
const double unitVecX = ( vecLength != 0.0 ) ? vecX / vecLength : 0.0;
|
||
|
const double unitVecY = ( vecLength != 0.0 ) ? vecY / vecLength : 0.0;
|
||
|
|
||
|
double maxDistSqr = 0.0;
|
||
|
int nVertexIndexMaxDistance = r.from + 1;
|
||
|
for ( int i = r.from + 1; i < r.to; i++ )
|
||
|
{
|
||
|
//compare to anchor
|
||
|
const double fromVecX = p[i].x() - p[r.from].x();
|
||
|
const double fromVecY = p[i].y() - p[r.from].y();
|
||
|
|
||
|
double distToSegmentSqr;
|
||
|
if ( fromVecX * unitVecX + fromVecY * unitVecY < 0.0 )
|
||
|
{
|
||
|
distToSegmentSqr = fromVecX * fromVecX + fromVecY * fromVecY;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const double toVecX = p[i].x() - p[r.to].x();
|
||
|
const double toVecY = p[i].y() - p[r.to].y();
|
||
|
const double toVecLength = toVecX * toVecX + toVecY * toVecY;
|
||
|
|
||
|
const double s = toVecX * ( -unitVecX ) + toVecY * ( -unitVecY );
|
||
|
if ( s < 0.0 )
|
||
|
{
|
||
|
distToSegmentSqr = toVecLength;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
distToSegmentSqr = qFabs( toVecLength - s * s );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( maxDistSqr < distToSegmentSqr )
|
||
|
{
|
||
|
maxDistSqr = distToSegmentSqr;
|
||
|
nVertexIndexMaxDistance = i;
|
||
|
}
|
||
|
}
|
||
|
if ( maxDistSqr <= toleranceSqr )
|
||
|
{
|
||
|
usePoint[r.from] = true;
|
||
|
usePoint[r.to] = true;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
stack.push( Line( r.from, nVertexIndexMaxDistance ) );
|
||
|
stack.push( Line( nVertexIndexMaxDistance, r.to ) );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
QPolygonF stripped;
|
||
|
for ( int i = 0; i < nPoints; i++ )
|
||
|
{
|
||
|
if ( usePoint[i] )
|
||
|
stripped += p[i];
|
||
|
}
|
||
|
|
||
|
return stripped;
|
||
|
}
|