511 lines
12 KiB
C++
511 lines
12 KiB
C++
|
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
||
|
* Qwt Widget Library
|
||
|
* Copyright (C) 1997 Josef Wilgen
|
||
|
* Copyright (C) 2002 Uwe Rathmann
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the Qwt License, Version 1.0
|
||
|
*****************************************************************************/
|
||
|
|
||
|
#include "qwt_clipper.h"
|
||
|
#include "qwt_point_polar.h"
|
||
|
#include <qrect.h>
|
||
|
#include <string.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#if QT_VERSION < 0x040601
|
||
|
#define qAtan(x) ::atan(x)
|
||
|
#endif
|
||
|
|
||
|
namespace QwtClip
|
||
|
{
|
||
|
// some templates used for inlining
|
||
|
template <class Point, typename T> class LeftEdge;
|
||
|
template <class Point, typename T> class RightEdge;
|
||
|
template <class Point, typename T> class TopEdge;
|
||
|
template <class Point, typename T> class BottomEdge;
|
||
|
|
||
|
template <class Point> class PointBuffer;
|
||
|
}
|
||
|
|
||
|
template <class Point, typename Value>
|
||
|
class QwtClip::LeftEdge
|
||
|
{
|
||
|
public:
|
||
|
inline LeftEdge( Value x1, Value, Value, Value ):
|
||
|
d_x1( x1 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
inline bool isInside( const Point &p ) const
|
||
|
{
|
||
|
return p.x() >= d_x1;
|
||
|
}
|
||
|
|
||
|
inline Point intersection( const Point &p1, const Point &p2 ) const
|
||
|
{
|
||
|
double dy = ( p1.y() - p2.y() ) / double( p1.x() - p2.x() );
|
||
|
return Point( d_x1, static_cast< Value >( p2.y() + ( d_x1 - p2.x() ) * dy ) );
|
||
|
}
|
||
|
private:
|
||
|
const Value d_x1;
|
||
|
};
|
||
|
|
||
|
template <class Point, typename Value>
|
||
|
class QwtClip::RightEdge
|
||
|
{
|
||
|
public:
|
||
|
inline RightEdge( Value, Value x2, Value, Value ):
|
||
|
d_x2( x2 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
inline bool isInside( const Point &p ) const
|
||
|
{
|
||
|
return p.x() <= d_x2;
|
||
|
}
|
||
|
|
||
|
inline Point intersection( const Point &p1, const Point &p2 ) const
|
||
|
{
|
||
|
double dy = ( p1.y() - p2.y() ) / double( p1.x() - p2.x() );
|
||
|
return Point( d_x2, static_cast<Value>( p2.y() + ( d_x2 - p2.x() ) * dy ) );
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Value d_x2;
|
||
|
};
|
||
|
|
||
|
template <class Point, typename Value>
|
||
|
class QwtClip::TopEdge
|
||
|
{
|
||
|
public:
|
||
|
inline TopEdge( Value, Value, Value y1, Value ):
|
||
|
d_y1( y1 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
inline bool isInside( const Point &p ) const
|
||
|
{
|
||
|
return p.y() >= d_y1;
|
||
|
}
|
||
|
|
||
|
inline Point intersection( const Point &p1, const Point &p2 ) const
|
||
|
{
|
||
|
double dx = ( p1.x() - p2.x() ) / double( p1.y() - p2.y() );
|
||
|
return Point( static_cast<Value>( p2.x() + ( d_y1 - p2.y() ) * dx ), d_y1 );
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Value d_y1;
|
||
|
};
|
||
|
|
||
|
template <class Point, typename Value>
|
||
|
class QwtClip::BottomEdge
|
||
|
{
|
||
|
public:
|
||
|
inline BottomEdge( Value, Value, Value, Value y2 ):
|
||
|
d_y2( y2 )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
inline bool isInside( const Point &p ) const
|
||
|
{
|
||
|
return p.y() <= d_y2;
|
||
|
}
|
||
|
|
||
|
inline Point intersection( const Point &p1, const Point &p2 ) const
|
||
|
{
|
||
|
double dx = ( p1.x() - p2.x() ) / double( p1.y() - p2.y() );
|
||
|
return Point( static_cast<Value>( p2.x() + ( d_y2 - p2.y() ) * dx ), d_y2 );
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const Value d_y2;
|
||
|
};
|
||
|
|
||
|
template<class Point>
|
||
|
class QwtClip::PointBuffer
|
||
|
{
|
||
|
public:
|
||
|
PointBuffer( int capacity = 0 ):
|
||
|
m_capacity( 0 ),
|
||
|
m_size( 0 ),
|
||
|
m_buffer( NULL )
|
||
|
{
|
||
|
if ( capacity > 0 )
|
||
|
reserve( capacity );
|
||
|
}
|
||
|
|
||
|
~PointBuffer()
|
||
|
{
|
||
|
if ( m_buffer )
|
||
|
::free( m_buffer );
|
||
|
}
|
||
|
|
||
|
inline void setPoints( int numPoints, const Point *points )
|
||
|
{
|
||
|
reserve( numPoints );
|
||
|
|
||
|
m_size = numPoints;
|
||
|
::memcpy( m_buffer, points, m_size * sizeof( Point ) );
|
||
|
}
|
||
|
|
||
|
inline void reset()
|
||
|
{
|
||
|
m_size = 0;
|
||
|
}
|
||
|
|
||
|
inline int size() const
|
||
|
{
|
||
|
return m_size;
|
||
|
}
|
||
|
|
||
|
inline Point *data() const
|
||
|
{
|
||
|
return m_buffer;
|
||
|
}
|
||
|
|
||
|
inline Point &operator[]( int i )
|
||
|
{
|
||
|
return m_buffer[i];
|
||
|
}
|
||
|
|
||
|
inline const Point &operator[]( int i ) const
|
||
|
{
|
||
|
return m_buffer[i];
|
||
|
}
|
||
|
|
||
|
inline void add( const Point &point )
|
||
|
{
|
||
|
if ( m_capacity <= m_size )
|
||
|
reserve( m_size + 1 );
|
||
|
|
||
|
m_buffer[m_size++] = point;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
inline void reserve( int size )
|
||
|
{
|
||
|
if ( m_capacity == 0 )
|
||
|
m_capacity = 1;
|
||
|
|
||
|
while ( m_capacity < size )
|
||
|
m_capacity *= 2;
|
||
|
|
||
|
m_buffer = static_cast<Point *>(
|
||
|
::realloc( m_buffer, m_capacity * sizeof( Point ) ) );
|
||
|
}
|
||
|
|
||
|
int m_capacity;
|
||
|
int m_size;
|
||
|
Point *m_buffer;
|
||
|
};
|
||
|
|
||
|
using namespace QwtClip;
|
||
|
|
||
|
template <class Polygon, class Rect, class Point, typename T>
|
||
|
class QwtPolygonClipper
|
||
|
{
|
||
|
public:
|
||
|
QwtPolygonClipper( const Rect &clipRect ):
|
||
|
d_clipRect( clipRect )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
Polygon clipPolygon( const Polygon &polygon, bool closePolygon ) const
|
||
|
{
|
||
|
#if 0
|
||
|
if ( d_clipRect.contains( polygon.boundingRect() ) )
|
||
|
return polygon;
|
||
|
#endif
|
||
|
|
||
|
PointBuffer<Point> points1;
|
||
|
PointBuffer<Point> points2( qMin( 256, polygon.size() ) );
|
||
|
|
||
|
points1.setPoints( polygon.size(), polygon.data() );
|
||
|
|
||
|
clipEdge< LeftEdge<Point, T> >( closePolygon, points1, points2 );
|
||
|
clipEdge< RightEdge<Point, T> >( closePolygon, points2, points1 );
|
||
|
clipEdge< TopEdge<Point, T> >( closePolygon, points1, points2 );
|
||
|
clipEdge< BottomEdge<Point, T> >( closePolygon, points2, points1 );
|
||
|
|
||
|
Polygon p;
|
||
|
p.resize( points1.size() );
|
||
|
::memcpy( p.data(), points1.data(), points1.size() * sizeof( Point ) );
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
template <class Edge>
|
||
|
inline void clipEdge( bool closePolygon,
|
||
|
PointBuffer<Point> &points, PointBuffer<Point> &clippedPoints ) const
|
||
|
{
|
||
|
clippedPoints.reset();
|
||
|
|
||
|
if ( points.size() < 2 )
|
||
|
{
|
||
|
if ( points.size() == 1 )
|
||
|
clippedPoints.add( points[0] );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const Edge edge( d_clipRect.x(), d_clipRect.x() + d_clipRect.width(),
|
||
|
d_clipRect.y(), d_clipRect.y() + d_clipRect.height() );
|
||
|
|
||
|
int lastPos, start;
|
||
|
if ( closePolygon )
|
||
|
{
|
||
|
start = 0;
|
||
|
lastPos = points.size() - 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
start = 1;
|
||
|
lastPos = 0;
|
||
|
|
||
|
if ( edge.isInside( points[0] ) )
|
||
|
clippedPoints.add( points[0] );
|
||
|
}
|
||
|
|
||
|
const uint nPoints = points.size();
|
||
|
for ( uint i = start; i < nPoints; i++ )
|
||
|
{
|
||
|
const Point &p1 = points[i];
|
||
|
const Point &p2 = points[lastPos];
|
||
|
|
||
|
if ( edge.isInside( p1 ) )
|
||
|
{
|
||
|
if ( edge.isInside( p2 ) )
|
||
|
{
|
||
|
clippedPoints.add( p1 );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
clippedPoints.add( edge.intersection( p1, p2 ) );
|
||
|
clippedPoints.add( p1 );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ( edge.isInside( p2 ) )
|
||
|
{
|
||
|
clippedPoints.add( edge.intersection( p1, p2 ) );
|
||
|
}
|
||
|
}
|
||
|
lastPos = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const Rect d_clipRect;
|
||
|
};
|
||
|
|
||
|
class QwtCircleClipper
|
||
|
{
|
||
|
public:
|
||
|
QwtCircleClipper( const QRectF &r );
|
||
|
QVector<QwtInterval> clipCircle( const QPointF &, double radius ) const;
|
||
|
|
||
|
private:
|
||
|
enum Edge
|
||
|
{
|
||
|
Left,
|
||
|
Top,
|
||
|
Right,
|
||
|
Bottom,
|
||
|
|
||
|
NEdges
|
||
|
};
|
||
|
|
||
|
QList<QPointF> cuttingPoints(
|
||
|
Edge, const QPointF &pos, double radius ) const;
|
||
|
|
||
|
double toAngle( const QPointF &, const QPointF & ) const;
|
||
|
|
||
|
const QRectF d_rect;
|
||
|
};
|
||
|
|
||
|
|
||
|
QwtCircleClipper::QwtCircleClipper( const QRectF &r ):
|
||
|
d_rect( r )
|
||
|
{
|
||
|
}
|
||
|
|
||
|
QVector<QwtInterval> QwtCircleClipper::clipCircle(
|
||
|
const QPointF &pos, double radius ) const
|
||
|
{
|
||
|
QList<QPointF> points;
|
||
|
for ( int edge = 0; edge < NEdges; edge++ )
|
||
|
points += cuttingPoints( static_cast<Edge>(edge), pos, radius );
|
||
|
|
||
|
QVector<QwtInterval> intv;
|
||
|
if ( points.size() <= 0 )
|
||
|
{
|
||
|
QRectF cRect( 0, 0, 2 * radius, 2 * radius );
|
||
|
cRect.moveCenter( pos );
|
||
|
if ( d_rect.contains( cRect ) )
|
||
|
intv += QwtInterval( 0.0, 2 * M_PI );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
QList<double> angles;
|
||
|
for ( int i = 0; i < points.size(); i++ )
|
||
|
angles += toAngle( pos, points[i] );
|
||
|
qSort( angles );
|
||
|
|
||
|
const int in = d_rect.contains( qwtPolar2Pos( pos, radius,
|
||
|
angles[0] + ( angles[1] - angles[0] ) / 2 ) );
|
||
|
|
||
|
if ( in )
|
||
|
{
|
||
|
for ( int i = 0; i < angles.size() - 1; i += 2 )
|
||
|
intv += QwtInterval( angles[i], angles[i+1] );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for ( int i = 1; i < angles.size() - 1; i += 2 )
|
||
|
intv += QwtInterval( angles[i], angles[i+1] );
|
||
|
intv += QwtInterval( angles.last(), angles.first() );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return intv;
|
||
|
}
|
||
|
|
||
|
double QwtCircleClipper::toAngle(
|
||
|
const QPointF &from, const QPointF &to ) const
|
||
|
{
|
||
|
if ( from.x() == to.x() )
|
||
|
return from.y() <= to.y() ? M_PI / 2.0 : 3 * M_PI / 2.0;
|
||
|
|
||
|
const double m = qAbs( ( to.y() - from.y() ) / ( to.x() - from.x() ) );
|
||
|
|
||
|
double angle = qAtan( m );
|
||
|
if ( to.x() > from.x() )
|
||
|
{
|
||
|
if ( to.y() > from.y() )
|
||
|
angle = 2 * M_PI - angle;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if ( to.y() > from.y() )
|
||
|
angle = M_PI + angle;
|
||
|
else
|
||
|
angle = M_PI - angle;
|
||
|
}
|
||
|
|
||
|
return angle;
|
||
|
}
|
||
|
|
||
|
QList<QPointF> QwtCircleClipper::cuttingPoints(
|
||
|
Edge edge, const QPointF &pos, double radius ) const
|
||
|
{
|
||
|
QList<QPointF> points;
|
||
|
|
||
|
if ( edge == Left || edge == Right )
|
||
|
{
|
||
|
const double x = ( edge == Left ) ? d_rect.left() : d_rect.right();
|
||
|
if ( qAbs( pos.x() - x ) < radius )
|
||
|
{
|
||
|
const double off = qSqrt( qwtSqr( radius ) - qwtSqr( pos.x() - x ) );
|
||
|
const double m_y1 = pos.y() + off;
|
||
|
if ( m_y1 >= d_rect.top() && m_y1 <= d_rect.bottom() )
|
||
|
points += QPointF( x, m_y1 );
|
||
|
|
||
|
const double m_y2 = pos.y() - off;
|
||
|
if ( m_y2 >= d_rect.top() && m_y2 <= d_rect.bottom() )
|
||
|
points += QPointF( x, m_y2 );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const double y = ( edge == Top ) ? d_rect.top() : d_rect.bottom();
|
||
|
if ( qAbs( pos.y() - y ) < radius )
|
||
|
{
|
||
|
const double off = qSqrt( qwtSqr( radius ) - qwtSqr( pos.y() - y ) );
|
||
|
const double x1 = pos.x() + off;
|
||
|
if ( x1 >= d_rect.left() && x1 <= d_rect.right() )
|
||
|
points += QPointF( x1, y );
|
||
|
|
||
|
const double m_x2 = pos.x() - off;
|
||
|
if ( m_x2 >= d_rect.left() && m_x2 <= d_rect.right() )
|
||
|
points += QPointF( m_x2, y );
|
||
|
}
|
||
|
}
|
||
|
return points;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Sutherland-Hodgman polygon clipping
|
||
|
|
||
|
\param clipRect Clip rectangle
|
||
|
\param polygon Polygon
|
||
|
\param closePolygon True, when the polygon is closed
|
||
|
|
||
|
\return Clipped polygon
|
||
|
*/
|
||
|
QPolygon QwtClipper::clipPolygon(
|
||
|
const QRectF &clipRect, const QPolygon &polygon, bool closePolygon )
|
||
|
{
|
||
|
const int minX = qCeil( clipRect.left() );
|
||
|
const int maxX = qFloor( clipRect.right() );
|
||
|
const int minY = qCeil( clipRect.top() );
|
||
|
const int maxY = qFloor( clipRect.bottom() );
|
||
|
|
||
|
const QRect r( minX, minY, maxX - minX, maxY - minY );
|
||
|
|
||
|
QwtPolygonClipper<QPolygon, QRect, QPoint, int> clipper( r );
|
||
|
return clipper.clipPolygon( polygon, closePolygon );
|
||
|
}
|
||
|
/*!
|
||
|
Sutherland-Hodgman polygon clipping
|
||
|
|
||
|
\param clipRect Clip rectangle
|
||
|
\param polygon Polygon
|
||
|
\param closePolygon True, when the polygon is closed
|
||
|
|
||
|
\return Clipped polygon
|
||
|
*/
|
||
|
QPolygon QwtClipper::clipPolygon(
|
||
|
const QRect &clipRect, const QPolygon &polygon, bool closePolygon )
|
||
|
{
|
||
|
QwtPolygonClipper<QPolygon, QRect, QPoint, int> clipper( clipRect );
|
||
|
return clipper.clipPolygon( polygon, closePolygon );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Sutherland-Hodgman polygon clipping
|
||
|
|
||
|
\param clipRect Clip rectangle
|
||
|
\param polygon Polygon
|
||
|
\param closePolygon True, when the polygon is closed
|
||
|
|
||
|
\return Clipped polygon
|
||
|
*/
|
||
|
QPolygonF QwtClipper::clipPolygonF(
|
||
|
const QRectF &clipRect, const QPolygonF &polygon, bool closePolygon )
|
||
|
{
|
||
|
QwtPolygonClipper<QPolygonF, QRectF, QPointF, double> clipper( clipRect );
|
||
|
return clipper.clipPolygon( polygon, closePolygon );
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
Circle clipping
|
||
|
|
||
|
clipCircle() divides a circle into intervals of angles representing arcs
|
||
|
of the circle. When the circle is completely inside the clip rectangle
|
||
|
an interval [0.0, 2 * M_PI] is returned.
|
||
|
|
||
|
\param clipRect Clip rectangle
|
||
|
\param center Center of the circle
|
||
|
\param radius Radius of the circle
|
||
|
|
||
|
\return Arcs of the circle
|
||
|
*/
|
||
|
QVector<QwtInterval> QwtClipper::clipCircle( const QRectF &clipRect,
|
||
|
const QPointF ¢er, double radius )
|
||
|
{
|
||
|
QwtCircleClipper clipper( clipRect );
|
||
|
return clipper.clipCircle( center, radius );
|
||
|
}
|