// // gif.h // by Charlie Tangora // Public domain. // Email me : ctangora -at- gmail -dot- com // // This file offers a simple, very limited way to create animated GIFs directly in code. // // Those looking for particular cleverness are likely to be disappointed; it's pretty // much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg // dithering. (It does at least use delta encoding - only the changed portions of each // frame are saved.) // // So resulting files are often quite large. The hope is that it will be handy nonetheless // as a quick and easily-integrated way for programs to spit out animations. // // Only RGBA8 is currently supported as an input format. (The alpha is ignored.) // // USAGE: // Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header. // Pass subsequent frames to GifWriteFrame(). // Finally, call GifEnd() to close the file handle and free memory. // #ifndef __gif_h__ #define __gif_h__ #include // for FILE* #include // for memcpy and bzero #include // for integer typedefs // Define these macros to hook into a custom memory allocator. // TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs // and any temp memory allocated by a function will be freed before it exits. // MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which // is used to find changed pixels for delta-encoding.) #ifndef GIF_TEMP_MALLOC #include #define GIF_TEMP_MALLOC malloc #endif #ifndef GIF_TEMP_FREE #include #define GIF_TEMP_FREE free #endif #ifndef GIF_MALLOC #include #define GIF_MALLOC malloc #endif #ifndef GIF_FREE #include #define GIF_FREE free #endif class Gif { public: int kGifTransIndex; struct GifPalette { int bitDepth; uint8_t r[256]; uint8_t g[256]; uint8_t b[256]; // k-d tree over RGB space, organized in heap fashion // i.e. left child of node i is node i*2, right child is node i*2+1 // nodes 256-511 are implicitly the leaves, containing a color uint8_t treeSplitElt[255]; uint8_t treeSplit[255]; }; // max, min, and abs functions int GifIMax(int l, int r) { return l > r ? l : r; } int GifIMin(int l, int r) { return l < r ? l : r; } int GifIAbs(int i) { return i < 0 ? -i : i; } // walks the k-d tree to pick the palette entry for a desired color. // Takes as in/out parameters the current best color and its error - // only changes them if it finds a better color in its subtree. // this is the major hotspot in the code at the moment. void GifGetClosestPaletteColor(GifPalette *pPal, int r, int g, int b, int &bestInd, int &bestDiff, int treeRoot = 1) { // base case, reached the bottom of the tree if (treeRoot > (1 << pPal->bitDepth) - 1) { int ind = treeRoot - (1 << pPal->bitDepth); if (ind == kGifTransIndex) { return; } // check whether this color is better than the current winner int r_err = r - ((int32_t)pPal->r[ind]); int g_err = g - ((int32_t)pPal->g[ind]); int b_err = b - ((int32_t)pPal->b[ind]); int diff = GifIAbs(r_err) + GifIAbs(g_err) + GifIAbs(b_err); if (diff < bestDiff) { bestInd = ind; bestDiff = diff; } return; } // take the appropriate color (r, g, or b) for this node of the k-d tree int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b; int splitComp = comps[pPal->treeSplitElt[treeRoot]]; int splitPos = pPal->treeSplit[treeRoot]; if (splitPos > splitComp) { // check the left subtree GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2); if (bestDiff > splitPos - splitComp) { // cannot prove there's not a better value in the right subtree, check that too GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2 + 1); } } else { GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2 + 1); if (bestDiff > splitComp - splitPos) { GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2); } } } void GifSwapPixels(uint8_t *image, int pixA, int pixB) { uint8_t rA = image[pixA * 4]; uint8_t gA = image[pixA * 4 + 1]; uint8_t bA = image[pixA * 4 + 2]; uint8_t aA = image[pixA * 4 + 3]; uint8_t rB = image[pixB * 4]; uint8_t gB = image[pixB * 4 + 1]; uint8_t bB = image[pixB * 4 + 2]; uint8_t aB = image[pixA * 4 + 3]; image[pixA * 4] = rB; image[pixA * 4 + 1] = gB; image[pixA * 4 + 2] = bB; image[pixA * 4 + 3] = aB; image[pixB * 4] = rA; image[pixB * 4 + 1] = gA; image[pixB * 4 + 2] = bA; image[pixB * 4 + 3] = aA; } // just the partition operation from quicksort int GifPartition(uint8_t *image, const int left, const int right, const int elt, int pivotIndex) { const int pivotValue = image[(pivotIndex) * 4 + elt]; GifSwapPixels(image, pivotIndex, right - 1); int storeIndex = left; bool split = 0; for (int ii = left; ii < right - 1; ++ii) { int arrayVal = image[ii * 4 + elt]; if (arrayVal < pivotValue) { GifSwapPixels(image, ii, storeIndex); ++storeIndex; } else if (arrayVal == pivotValue) { if (split) { GifSwapPixels(image, ii, storeIndex); ++storeIndex; } split = !split; } } GifSwapPixels(image, storeIndex, right - 1); return storeIndex; } // Perform an incomplete sort, finding all elements above and below the desired median void GifPartitionByMedian(uint8_t *image, int left, int right, int com, int neededCenter) { if (left < right - 1) { int pivotIndex = left + (right - left) / 2; pivotIndex = GifPartition(image, left, right, com, pivotIndex); // Only "sort" the section of the array that contains the median if (pivotIndex > neededCenter) { GifPartitionByMedian(image, left, pivotIndex, com, neededCenter); } if (pivotIndex < neededCenter) { GifPartitionByMedian(image, pivotIndex + 1, right, com, neededCenter); } } } // Builds a palette by creating a balanced k-d tree of all pixels in the image void GifSplitPalette(uint8_t *image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette *pal) { if (lastElt <= firstElt || numPixels == 0) { return; } // base case, bottom of the tree if (lastElt == firstElt + 1) { if (buildForDither) { // Dithering needs at least one color as dark as anything // in the image and at least one brightest color - // otherwise it builds up error and produces strange artifacts if (firstElt == 1) { // special case: the darkest color in the image uint32_t r = 255, g = 255, b = 255; for (int ii = 0; ii < numPixels; ++ii) { r = (uint32_t)GifIMin((int32_t)r, image[ii * 4 + 0]); g = (uint32_t)GifIMin((int32_t)g, image[ii * 4 + 1]); b = (uint32_t)GifIMin((int32_t)b, image[ii * 4 + 2]); } pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } if (firstElt == (1 << pal->bitDepth) - 1) { // special case: the lightest color in the image uint32_t r = 0, g = 0, b = 0; for (int ii = 0; ii < numPixels; ++ii) { r = (uint32_t)GifIMax((int32_t)r, image[ii * 4 + 0]); g = (uint32_t)GifIMax((int32_t)g, image[ii * 4 + 1]); b = (uint32_t)GifIMax((int32_t)b, image[ii * 4 + 2]); } pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } } // otherwise, take the average of all colors in this subcube uint64_t r = 0, g = 0, b = 0; for (int ii = 0; ii < numPixels; ++ii) { r += image[ii * 4 + 0]; g += image[ii * 4 + 1]; b += image[ii * 4 + 2]; } r += (uint64_t)numPixels / 2; // round to nearest g += (uint64_t)numPixels / 2; b += (uint64_t)numPixels / 2; r /= (uint64_t)numPixels; g /= (uint64_t)numPixels; b /= (uint64_t)numPixels; pal->r[firstElt] = (uint8_t)r; pal->g[firstElt] = (uint8_t)g; pal->b[firstElt] = (uint8_t)b; return; } // Find the axis with the largest range int minR = 255, maxR = 0; int minG = 255, maxG = 0; int minB = 255, maxB = 0; for (int ii = 0; ii < numPixels; ++ii) { int r = image[ii * 4 + 0]; int g = image[ii * 4 + 1]; int b = image[ii * 4 + 2]; if (r > maxR) { maxR = r; } if (r < minR) { minR = r; } if (g > maxG) { maxG = g; } if (g < minG) { minG = g; } if (b > maxB) { maxB = b; } if (b < minB) { minB = b; } } int rRange = maxR - minR; int gRange = maxG - minG; int bRange = maxB - minB; // and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it) int splitCom = 1; if (bRange > gRange) { splitCom = 2; } if (rRange > bRange && rRange > gRange) { splitCom = 0; } int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt); int subPixelsB = numPixels - subPixelsA; GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA); pal->treeSplitElt[treeNode] = (uint8_t)splitCom; pal->treeSplit[treeNode] = image[subPixelsA * 4 + splitCom]; GifSplitPalette(image, subPixelsA, firstElt, splitElt, splitElt - splitDist, splitDist / 2, treeNode * 2, buildForDither, pal); GifSplitPalette(image + subPixelsA * 4, subPixelsB, splitElt, lastElt, splitElt + splitDist, splitDist / 2, treeNode * 2 + 1, buildForDither, pal); } // Finds all pixels that have changed from the previous image and // moves them to the fromt of th buffer. // This allows us to build a palette optimized for the colors of the // changed pixels only. int GifPickChangedPixels(const uint8_t *lastFrame, uint8_t *frame, int numPixels) { int numChanged = 0; uint8_t *writeIter = frame; for (int ii = 0; ii < numPixels; ++ii) { if (lastFrame[0] != frame[0] || lastFrame[1] != frame[1] || lastFrame[2] != frame[2]) { writeIter[0] = frame[0]; writeIter[1] = frame[1]; writeIter[2] = frame[2]; ++numChanged; writeIter += 4; } lastFrame += 4; frame += 4; } return numChanged; } // Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom. // This is known as the "modified median split" technique void GifMakePalette(const uint8_t *lastFrame, const uint8_t *nextFrame, uint32_t width, uint32_t height, int bitDepth, bool buildForDither, GifPalette *pPal) { pPal->bitDepth = bitDepth; // SplitPalette is destructive (it sorts the pixels by color) so // we must create a copy of the image for it to destroy size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t)); uint8_t *destroyableImage = (uint8_t *)GIF_TEMP_MALLOC(imageSize); memcpy(destroyableImage, nextFrame, imageSize); int numPixels = (int)(width * height); if (lastFrame) { numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels); } const int lastElt = 1 << bitDepth; const int splitElt = lastElt / 2; const int splitDist = splitElt / 2; GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal); GIF_TEMP_FREE(destroyableImage); // add the bottom node for the transparency index pPal->treeSplit[1 << (bitDepth - 1)] = 0; pPal->treeSplitElt[1 << (bitDepth - 1)] = 0; pPal->r[0] = pPal->g[0] = pPal->b[0] = 0; } // Implements Floyd-Steinberg dithering, writes palette value to alpha void GifDitherImage(const uint8_t *lastFrame, const uint8_t *nextFrame, uint8_t *outFrame, uint32_t width, uint32_t height, GifPalette *pPal) { int numPixels = (int)(width * height); // quantPixels initially holds color*256 for all pixels // The extra 8 bits of precision allow for sub-single-color error values // to be propagated int32_t *quantPixels = (int32_t *)GIF_TEMP_MALLOC(sizeof(int32_t) * (size_t)numPixels * 4); for (int ii = 0; ii < numPixels * 4; ++ii) { uint8_t pix = nextFrame[ii]; int32_t pix16 = int32_t(pix) * 256; quantPixels[ii] = pix16; } for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { int32_t *nextPix = quantPixels + 4 * (yy * width + xx); const uint8_t *lastPix = lastFrame ? lastFrame + 4 * (yy * width + xx) : NULL; // Compute the colors we want (rounding to nearest) int32_t rr = (nextPix[0] + 127) / 256; int32_t gg = (nextPix[1] + 127) / 256; int32_t bb = (nextPix[2] + 127) / 256; // if it happens that we want the color from last frame, then just write out // a transparent pixel if (lastFrame && lastPix[0] == rr && lastPix[1] == gg && lastPix[2] == bb) { nextPix[0] = rr; nextPix[1] = gg; nextPix[2] = bb; nextPix[3] = kGifTransIndex; continue; } int32_t bestDiff = 1000000; int32_t bestInd = kGifTransIndex; // Search the palete GifGetClosestPaletteColor(pPal, rr, gg, bb, bestInd, bestDiff); // Write the result to the temp buffer int32_t r_err = nextPix[0] - int32_t(pPal->r[bestInd]) * 256; int32_t g_err = nextPix[1] - int32_t(pPal->g[bestInd]) * 256; int32_t b_err = nextPix[2] - int32_t(pPal->b[bestInd]) * 256; nextPix[0] = pPal->r[bestInd]; nextPix[1] = pPal->g[bestInd]; nextPix[2] = pPal->b[bestInd]; nextPix[3] = bestInd; // Propagate the error to the four adjacent locations // that we haven't touched yet int quantloc_7 = (int)(yy * width + xx + 1); int quantloc_3 = (int)(yy * width + width + xx - 1); int quantloc_5 = (int)(yy * width + width + xx); int quantloc_1 = (int)(yy * width + width + xx + 1); if (quantloc_7 < numPixels) { int32_t *pix7 = quantPixels + 4 * quantloc_7; pix7[0] += GifIMax(-pix7[0], r_err * 7 / 16); pix7[1] += GifIMax(-pix7[1], g_err * 7 / 16); pix7[2] += GifIMax(-pix7[2], b_err * 7 / 16); } if (quantloc_3 < numPixels) { int32_t *pix3 = quantPixels + 4 * quantloc_3; pix3[0] += GifIMax(-pix3[0], r_err * 3 / 16); pix3[1] += GifIMax(-pix3[1], g_err * 3 / 16); pix3[2] += GifIMax(-pix3[2], b_err * 3 / 16); } if (quantloc_5 < numPixels) { int32_t *pix5 = quantPixels + 4 * quantloc_5; pix5[0] += GifIMax(-pix5[0], r_err * 5 / 16); pix5[1] += GifIMax(-pix5[1], g_err * 5 / 16); pix5[2] += GifIMax(-pix5[2], b_err * 5 / 16); } if (quantloc_1 < numPixels) { int32_t *pix1 = quantPixels + 4 * quantloc_1; pix1[0] += GifIMax(-pix1[0], r_err / 16); pix1[1] += GifIMax(-pix1[1], g_err / 16); pix1[2] += GifIMax(-pix1[2], b_err / 16); } } } // Copy the palettized result to the output buffer for (int ii = 0; ii < numPixels * 4; ++ii) { outFrame[ii] = (uint8_t)quantPixels[ii]; } GIF_TEMP_FREE(quantPixels); } // Picks palette colors for the image using simple thresholding, no dithering void GifThresholdImage(const uint8_t *lastFrame, const uint8_t *nextFrame, uint8_t *outFrame, uint32_t width, uint32_t height, GifPalette *pPal) { uint32_t numPixels = width * height; for (uint32_t ii = 0; ii < numPixels; ++ii) { // if a previous color is available, and it matches the current color, // set the pixel to transparent if (lastFrame && lastFrame[0] == nextFrame[0] && lastFrame[1] == nextFrame[1] && lastFrame[2] == nextFrame[2]) { outFrame[0] = lastFrame[0]; outFrame[1] = lastFrame[1]; outFrame[2] = lastFrame[2]; outFrame[3] = kGifTransIndex; } else { // palettize the pixel int32_t bestDiff = 1000000; int32_t bestInd = 1; GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], bestInd, bestDiff); // Write the resulting color to the output buffer outFrame[0] = pPal->r[bestInd]; outFrame[1] = pPal->g[bestInd]; outFrame[2] = pPal->b[bestInd]; outFrame[3] = (uint8_t)bestInd; } if (lastFrame) { lastFrame += 4; } outFrame += 4; nextFrame += 4; } } // Simple structure to write out the LZW-compressed portion of the image // one bit at a time struct GifBitStatus { uint8_t bitIndex; // how many bits in the partial byte written so far uint8_t byte; // current partial byte uint32_t chunkIndex; uint8_t chunk[256]; // bytes are written in here until we have 256 of them, then written to the file }; // insert a single bit void GifWriteBit(GifBitStatus &stat, uint32_t bit) { bit = bit & 1; bit = bit << stat.bitIndex; stat.byte |= bit; ++stat.bitIndex; if (stat.bitIndex > 7) { // move the newly-finished byte to the chunk buffer stat.chunk[stat.chunkIndex++] = stat.byte; // and start a new byte stat.bitIndex = 0; stat.byte = 0; } } // write all bytes so far to the file void GifWriteChunk(FILE *f, GifBitStatus &stat) { fputc((int)stat.chunkIndex, f); fwrite(stat.chunk, 1, stat.chunkIndex, f); stat.bitIndex = 0; stat.byte = 0; stat.chunkIndex = 0; } void GifWriteCode(FILE *f, GifBitStatus &stat, uint32_t code, uint32_t length) { for (uint32_t ii = 0; ii < length; ++ii) { GifWriteBit(stat, code); code = code >> 1; if (stat.chunkIndex == 255) { GifWriteChunk(f, stat); } } } // The LZW dictionary is a 256-ary tree constructed as the file is encoded, // this is one node struct GifLzwNode { uint16_t m_next[256]; }; // write a 256-color (8-bit) image palette to the file void GifWritePalette(const GifPalette *pPal, FILE *f) { fputc(0, f); // first color: transparency fputc(0, f); fputc(0, f); for (int ii = 1; ii < (1 << pPal->bitDepth); ++ii) { uint32_t r = pPal->r[ii]; uint32_t g = pPal->g[ii]; uint32_t b = pPal->b[ii]; fputc((int)r, f); fputc((int)g, f); fputc((int)b, f); } } // write the image header, LZW-compress and write out the image void GifWriteLzwImage(FILE *f, uint8_t *image, uint32_t left, uint32_t top, uint32_t width, uint32_t height, uint32_t delay, GifPalette *pPal) { // graphics control extension fputc(0x21, f); fputc(0xf9, f); fputc(0x04, f); fputc(0x05, f); // leave prev frame in place, this frame has transparency fputc(delay & 0xff, f); fputc((delay >> 8) & 0xff, f); fputc(kGifTransIndex, f); // transparent color index fputc(0, f); fputc(0x2c, f); // image descriptor block fputc(left & 0xff, f); // corner of image in canvas space fputc((left >> 8) & 0xff, f); fputc(top & 0xff, f); fputc((top >> 8) & 0xff, f); fputc(width & 0xff, f); // width and height of image fputc((width >> 8) & 0xff, f); fputc(height & 0xff, f); fputc((height >> 8) & 0xff, f); //fputc(0, f); // no local color table, no transparency //fputc(0x80, f); // no local color table, but transparency fputc(0x80 + pPal->bitDepth - 1, f); // local color table present, 2 ^ bitDepth entries GifWritePalette(pPal, f); const int minCodeSize = pPal->bitDepth; const uint32_t clearCode = 1 << pPal->bitDepth; fputc(minCodeSize, f); // min code size 8 bits GifLzwNode *codetree = (GifLzwNode *)GIF_TEMP_MALLOC(sizeof(GifLzwNode) * 4096); memset(codetree, 0, sizeof(GifLzwNode) * 4096); int32_t curCode = -1; uint32_t codeSize = (uint32_t)minCodeSize + 1; uint32_t maxCode = clearCode + 1; GifBitStatus stat; stat.byte = 0; stat.bitIndex = 0; stat.chunkIndex = 0; GifWriteCode(f, stat, clearCode, codeSize); // start with a fresh LZW dictionary for (uint32_t yy = 0; yy < height; ++yy) { for (uint32_t xx = 0; xx < width; ++xx) { uint8_t nextValue = image[(yy * width + xx) * 4 + 3]; // "loser mode" - no compression, every single code is followed immediately by a clear //WriteCode( f, stat, nextValue, codeSize ); //WriteCode( f, stat, 256, codeSize ); if (curCode < 0) { // first value in a new run curCode = nextValue; } else if (codetree[curCode].m_next[nextValue]) { // current run already in the dictionary curCode = codetree[curCode].m_next[nextValue]; } else { // finish the current run, write a code GifWriteCode(f, stat, (uint32_t)curCode, codeSize); // insert the new run into the dictionary codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode; if (maxCode >= (1ul << codeSize)) { // dictionary entry count has broken a size barrier, // we need more bits for codes codeSize++; } if (maxCode == 4095) { // the dictionary is full, clear it out and begin anew GifWriteCode(f, stat, clearCode, codeSize); // clear tree memset(codetree, 0, sizeof(GifLzwNode) * 4096); codeSize = (uint32_t)(minCodeSize + 1); maxCode = clearCode + 1; } curCode = nextValue; } } } // compression footer GifWriteCode(f, stat, (uint32_t)curCode, codeSize); GifWriteCode(f, stat, clearCode, codeSize); GifWriteCode(f, stat, clearCode + 1, (uint32_t)minCodeSize + 1); // write out the last partial chunk while (stat.bitIndex) { GifWriteBit(stat, 0); } if (stat.chunkIndex) { GifWriteChunk(f, stat); } fputc(0, f); // image block terminator GIF_TEMP_FREE(codetree); } struct GifWriter { FILE *f; uint8_t *oldImage; bool firstFrame; }; // Creates a gif file. // The input GIFWriter is assumed to be uninitialized. // The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value. bool GifBegin(GifWriter *writer, const char *filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false) { (void)bitDepth; (void)dither; // Mute "Unused argument" warnings #if defined(_MSC_VER) && (_MSC_VER >= 1400) writer->f = 0; fopen_s(&writer->f, filename, "wb"); #else writer->f = fopen(filename, "wb"); #endif if (!writer->f) { return false; } writer->firstFrame = true; // allocate writer->oldImage = (uint8_t *)GIF_MALLOC(width * height * 4); fputs("GIF89a", writer->f); // screen descriptor fputc(width & 0xff, writer->f); fputc((width >> 8) & 0xff, writer->f); fputc(height & 0xff, writer->f); fputc((height >> 8) & 0xff, writer->f); fputc(0xf0, writer->f); // there is an unsorted global color table of 2 entries fputc(0, writer->f); // background color fputc(0, writer->f); // pixels are square (we need to specify this because it's 1989) // now the "global" palette (really just a dummy palette) // color 0: black fputc(0, writer->f); fputc(0, writer->f); fputc(0, writer->f); // color 1: also black fputc(0, writer->f); fputc(0, writer->f); fputc(0, writer->f); if (delay != 0) { // animation header fputc(0x21, writer->f); // extension fputc(0xff, writer->f); // application specific fputc(11, writer->f); // length 11 fputs("NETSCAPE2.0", writer->f); // yes, really fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data fputc(1, writer->f); // JUST BECAUSE fputc(0, writer->f); // loop infinitely (byte 0) fputc(0, writer->f); // loop infinitely (byte 1) fputc(0, writer->f); // block terminator } return true; } // Writes out a new frame to a GIF in progress. // The GIFWriter should have been created by GIFBegin. // AFAIK, it is legal to use different bit depths for different frames of an image - // this may be handy to save bits in animations that don't change much. bool GifWriteFrame(GifWriter *writer, const uint8_t *image, uint32_t width, uint32_t height, uint32_t delay, int bitDepth = 8, bool dither = false) { if (!writer->f) { return false; } const uint8_t *oldImage = writer->firstFrame ? NULL : writer->oldImage; writer->firstFrame = false; GifPalette pal; GifMakePalette((dither ? NULL : oldImage), image, width, height, bitDepth, dither, &pal); if (dither) { GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal); } else { GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal); } GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal); return true; } // Writes the EOF code, closes the file handle, and frees temp memory used by a GIF. // Many if not most viewers will still display a GIF properly if the EOF code is missing, // but it's still a good idea to write it out. bool GifEnd(GifWriter *writer) { if (!writer->f) { return false; } fputc(0x3b, writer->f); // end of file fclose(writer->f); GIF_FREE(writer->oldImage); writer->f = NULL; writer->oldImage = NULL; return true; } }; #endif