/***************************************************************************** * vlc_arrays.h : Arrays and data structures handling ***************************************************************************** * Copyright (C) 1999-2004 VLC authors and VideoLAN * $Id: 39b69952ffce040330da239f52778c3e82024bc4 $ * * Authors: Samuel Hocevar * Clément Stenac * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA. *****************************************************************************/ #ifndef VLC_ARRAYS_H_ #define VLC_ARRAYS_H_ /** * \file * This file defines functions, structures and macros for handling arrays in vlc */ /* realloc() that never fails *if* downsizing */ static inline void *realloc_down( void *ptr, size_t size ) { void *ret = realloc( ptr, size ); return ret ? ret : ptr; } #define TAB_INIT( count, tab ) \ do { \ (count) = 0; \ (tab) = NULL; \ } while(0) #define TAB_CLEAN( count, tab ) \ do { \ free( tab ); \ (count)= 0; \ (tab)= NULL; \ } while(0) #define TAB_APPEND_CAST( cast, count, tab, p ) \ do { \ if( (count) > 0 ) \ (tab) = cast realloc( tab, sizeof( *(tab) ) * ( (count) + 1 ) ); \ else \ (tab) = cast malloc( sizeof( *(tab) ) ); \ if( !(tab) ) abort(); \ (tab)[count] = (p); \ (count)++; \ } while(0) #define TAB_APPEND( count, tab, p ) \ TAB_APPEND_CAST( , count, tab, p ) #define TAB_FIND( count, tab, p, idx ) \ do { \ for( (idx) = 0; (idx) < (count); (idx)++ ) \ if( (tab)[(idx)] == (p) ) \ break; \ if( (idx) >= (count) ) \ (idx) = -1; \ } while(0) #define TAB_ERASE( count, tab, index ) \ do { \ if( (count) > 1 ) \ memmove( (tab) + (index), \ (tab) + (index) + 1, \ ((count) - (index) - 1 ) * sizeof( *(tab) ) );\ (count)--; \ if( (count) == 0 ) \ { \ free( tab ); \ (tab) = NULL; \ } \ } while(0) #define TAB_REMOVE( count, tab, p ) \ do { \ int i_index; \ TAB_FIND( count, tab, p, i_index ); \ if( i_index >= 0 ) \ TAB_ERASE( count, tab, i_index ); \ } while(0) #define TAB_INSERT_CAST( cast, count, tab, p, index ) do { \ if( (count) > 0 ) \ (tab) = cast realloc( tab, sizeof( *(tab) ) * ( (count) + 1 ) ); \ else \ (tab) = cast malloc( sizeof( *(tab) ) ); \ if( !(tab) ) abort(); \ if( (count) - (index) > 0 ) \ memmove( (tab) + (index) + 1, \ (tab) + (index), \ ((count) - (index)) * sizeof( *(tab) ) );\ (tab)[(index)] = (p); \ (count)++; \ } while(0) #define TAB_INSERT( count, tab, p, index ) \ TAB_INSERT_CAST( , count, tab, p, index ) /** * Binary search in a sorted array. The key must be comparable by < and > * \param entries array of entries * \param count number of entries * \param elem key to check within an entry (like .id, or ->i_id) * \param zetype type of the key * \param key value of the key * \param answer index of answer within the array. -1 if not found */ #define BSEARCH( entries, count, elem, zetype, key, answer ) \ do { \ int low = 0, high = count - 1; \ answer = -1; \ while( low <= high ) {\ int mid = ((unsigned int)low + (unsigned int)high) >> 1;\ zetype mid_val = entries[mid] elem;\ if( mid_val < key ) \ low = mid + 1; \ else if ( mid_val > key ) \ high = mid -1; \ else \ { \ answer = mid; break; \ }\ } \ } while(0) /************************************************************************ * Dynamic arrays with progressive allocation ************************************************************************/ /* Internal functions */ #define _ARRAY_ALLOC(array, newsize) { \ (array).i_alloc = newsize; \ (array).p_elems = realloc( (array).p_elems, (array).i_alloc * \ sizeof(*(array).p_elems) ); \ if( !(array).p_elems ) abort(); \ } #define _ARRAY_GROW1(array) { \ if( (array).i_alloc < 10 ) \ _ARRAY_ALLOC(array, 10 ) \ else if( (array).i_alloc == (array).i_size ) \ _ARRAY_ALLOC(array, (int)((array).i_alloc * 1.5) ) \ } #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) /* API */ #define DECL_ARRAY(type) struct { \ int i_alloc; \ int i_size; \ type *p_elems; \ } #define TYPEDEF_ARRAY(type, name) typedef DECL_ARRAY(type) name; #define ARRAY_INIT(array) \ do { \ (array).i_alloc = 0; \ (array).i_size = 0; \ (array).p_elems = NULL; \ } while(0) #define ARRAY_RESET(array) \ do { \ (array).i_alloc = 0; \ (array).i_size = 0; \ free( (array).p_elems ); (array).p_elems = NULL; \ } while(0) #define ARRAY_APPEND(array, elem) \ do { \ _ARRAY_GROW1(array); \ (array).p_elems[(array).i_size] = elem; \ (array).i_size++; \ } while(0) #define ARRAY_INSERT(array,elem,pos) \ do { \ _ARRAY_GROW1(array); \ if( (array).i_size - pos ) { \ memmove( (array).p_elems + pos + 1, (array).p_elems + pos, \ ((array).i_size-pos) * sizeof(*(array).p_elems) ); \ } \ (array).p_elems[pos] = elem; \ (array).i_size++; \ } while(0) #define _ARRAY_SHRINK(array) { \ if( (array).i_size > 10 && (array).i_size < (int)((array).i_alloc / 1.5) ) { \ _ARRAY_ALLOC(array, (array).i_size + 5); \ } \ } #define ARRAY_REMOVE(array,pos) \ do { \ if( (array).i_size - (pos) - 1 ) \ { \ memmove( (array).p_elems + pos, (array).p_elems + pos + 1, \ ( (array).i_size - pos - 1 ) *sizeof(*(array).p_elems) ); \ } \ (array).i_size--; \ _ARRAY_SHRINK(array); \ } while(0) #define ARRAY_VAL(array, pos) array.p_elems[pos] #define ARRAY_BSEARCH(array, elem, zetype, key, answer) \ BSEARCH( (array).p_elems, (array).i_size, elem, zetype, key, answer) #define FOREACH_ARRAY( item, array ) { \ int fe_idx; \ for( fe_idx = 0 ; fe_idx < (array).i_size ; fe_idx++ ) \ { \ item = (array).p_elems[fe_idx]; #define FOREACH_END() } } /************************************************************************ * Dynamic arrays with progressive allocation (Preferred API) ************************************************************************/ typedef struct vlc_array_t { size_t i_count; void ** pp_elems; } vlc_array_t; static inline void vlc_array_init( vlc_array_t * p_array ) { p_array->i_count = 0; p_array->pp_elems = NULL; } static inline void vlc_array_clear( vlc_array_t * p_array ) { free( p_array->pp_elems ); vlc_array_init( p_array ); } /* Read */ static inline size_t vlc_array_count( vlc_array_t * p_array ) { return p_array->i_count; } #ifndef __cplusplus # define vlc_array_item_at_index(ar, idx) \ _Generic((ar), \ const vlc_array_t *: ((ar)->pp_elems[idx]), \ vlc_array_t *: ((ar)->pp_elems[idx])) #else static inline void *vlc_array_item_at_index( vlc_array_t *ar, size_t idx ) { return ar->pp_elems[idx]; } static inline const void *vlc_array_item_at_index( const vlc_array_t *ar, size_t idx ) { return ar->pp_elems[idx]; } #endif static inline int vlc_array_index_of_item( const vlc_array_t *ar, const void *elem ) { for( size_t i = 0; i < ar->i_count; i++ ) { if( ar->pp_elems[i] == elem ) return i; } return -1; } /* Write */ static inline int vlc_array_insert( vlc_array_t *ar, void *elem, int idx ) { void **pp = (void **)realloc( ar->pp_elems, sizeof( void * ) * (ar->i_count + 1) ); if( unlikely(pp == NULL) ) return -1; size_t tail = ar->i_count - idx; if( tail > 0 ) memmove( pp + idx + 1, pp + idx, sizeof( void * ) * tail ); pp[idx] = elem; ar->i_count++; ar->pp_elems = pp; return 0; } static inline void vlc_array_insert_or_abort( vlc_array_t *ar, void *elem, int idx ) { if( vlc_array_insert( ar, elem, idx ) ) abort(); } static inline int vlc_array_append( vlc_array_t *ar, void *elem ) { void **pp = (void **)realloc( ar->pp_elems, sizeof( void * ) * (ar->i_count + 1) ); if( unlikely(pp == NULL) ) return -1; pp[ar->i_count++] = elem; ar->pp_elems = pp; return 0; } static inline void vlc_array_append_or_abort( vlc_array_t *ar, void *elem ) { if( vlc_array_append( ar, elem ) != 0 ) abort(); } static inline void vlc_array_remove( vlc_array_t *ar, size_t idx ) { void **pp = ar->pp_elems; size_t tail = ar->i_count - idx - 1; if( tail > 0 ) memmove( pp + idx, pp + idx + 1, sizeof( void * ) * tail ); ar->i_count--; if( ar->i_count > 0 ) { pp = (void **)realloc( pp, sizeof( void * ) * ar->i_count ); if( likely(pp != NULL) ) ar->pp_elems = pp; } else { free( pp ); ar->pp_elems = NULL; } } /************************************************************************ * Dictionaries ************************************************************************/ /* This function is not intended to be crypto-secure, we only want it to be * fast and not suck too much. This one is pretty fast and did 0 collisions * in wenglish's dictionary. */ static inline uint64_t DictHash( const char *psz_string, int hashsize ) { uint64_t i_hash = 0; if( psz_string ) { while( *psz_string ) { i_hash += *psz_string++; i_hash += i_hash << 10; i_hash ^= i_hash >> 8; } } return i_hash % hashsize; } typedef struct vlc_dictionary_entry_t { char * psz_key; void * p_value; struct vlc_dictionary_entry_t * p_next; } vlc_dictionary_entry_t; typedef struct vlc_dictionary_t { int i_size; vlc_dictionary_entry_t ** p_entries; } vlc_dictionary_t; static void * const kVLCDictionaryNotFound = NULL; static inline void vlc_dictionary_init( vlc_dictionary_t * p_dict, int i_size ) { p_dict->p_entries = NULL; if( i_size > 0 ) { p_dict->p_entries = (vlc_dictionary_entry_t **)calloc( i_size, sizeof(*p_dict->p_entries) ); if( !p_dict->p_entries ) i_size = 0; } p_dict->i_size = i_size; } static inline void vlc_dictionary_clear( vlc_dictionary_t * p_dict, void ( * pf_free )( void * p_data, void * p_obj ), void * p_obj ) { if( p_dict->p_entries ) { for( int i = 0; i < p_dict->i_size; i++ ) { vlc_dictionary_entry_t * p_current, * p_next; p_current = p_dict->p_entries[i]; while( p_current ) { p_next = p_current->p_next; if( pf_free != NULL ) ( * pf_free )( p_current->p_value, p_obj ); free( p_current->psz_key ); free( p_current ); p_current = p_next; } } free( p_dict->p_entries ); p_dict->p_entries = NULL; } p_dict->i_size = 0; } static inline int vlc_dictionary_has_key( const vlc_dictionary_t * p_dict, const char * psz_key ) { if( !p_dict->p_entries ) return 0; int i_pos = DictHash( psz_key, p_dict->i_size ); const vlc_dictionary_entry_t * p_entry = p_dict->p_entries[i_pos]; for( ; p_entry != NULL; p_entry = p_entry->p_next ) { if( !strcmp( psz_key, p_entry->psz_key ) ) break; } return p_entry != NULL; } static inline void * vlc_dictionary_value_for_key( const vlc_dictionary_t * p_dict, const char * psz_key ) { if( !p_dict->p_entries ) return kVLCDictionaryNotFound; int i_pos = DictHash( psz_key, p_dict->i_size ); vlc_dictionary_entry_t * p_entry = p_dict->p_entries[i_pos]; if( !p_entry ) return kVLCDictionaryNotFound; /* Make sure we return the right item. (Hash collision) */ do { if( !strcmp( psz_key, p_entry->psz_key ) ) return p_entry->p_value; p_entry = p_entry->p_next; } while( p_entry ); return kVLCDictionaryNotFound; } static inline int vlc_dictionary_keys_count( const vlc_dictionary_t * p_dict ) { vlc_dictionary_entry_t * p_entry; int i, count = 0; if( !p_dict->p_entries ) return 0; for( i = 0; i < p_dict->i_size; i++ ) { for( p_entry = p_dict->p_entries[i]; p_entry; p_entry = p_entry->p_next ) count++; } return count; } static inline bool vlc_dictionary_is_empty( const vlc_dictionary_t * p_dict ) { if( p_dict->p_entries ) for( int i = 0; i < p_dict->i_size; i++ ) if( p_dict->p_entries[i] ) return false; return true; } static inline char ** vlc_dictionary_all_keys( const vlc_dictionary_t * p_dict ) { vlc_dictionary_entry_t * p_entry; char ** ppsz_ret; int i, count = vlc_dictionary_keys_count( p_dict ); ppsz_ret = (char**)malloc(sizeof(char *) * (count + 1)); if( unlikely(!ppsz_ret) ) return NULL; count = 0; for( i = 0; i < p_dict->i_size; i++ ) { for( p_entry = p_dict->p_entries[i]; p_entry; p_entry = p_entry->p_next ) ppsz_ret[count++] = strdup( p_entry->psz_key ); } ppsz_ret[count] = NULL; return ppsz_ret; } static inline void vlc_dictionary_insert_impl_( vlc_dictionary_t * p_dict, const char * psz_key, void * p_value, bool rebuild ) { if( !p_dict->p_entries ) vlc_dictionary_init( p_dict, 1 ); int i_pos = DictHash( psz_key, p_dict->i_size ); vlc_dictionary_entry_t * p_entry; p_entry = (vlc_dictionary_entry_t *)malloc(sizeof(*p_entry)); p_entry->psz_key = strdup( psz_key ); p_entry->p_value = p_value; p_entry->p_next = p_dict->p_entries[i_pos]; p_dict->p_entries[i_pos] = p_entry; if( rebuild ) { /* Count how many items there was */ int count; for( count = 1; p_entry->p_next; count++ ) p_entry = p_entry->p_next; if( count > 3 ) /* XXX: this need tuning */ { /* Here it starts to be not good, rebuild a bigger dictionary */ struct vlc_dictionary_t new_dict; int i_new_size = ( (p_dict->i_size+2) * 3) / 2; /* XXX: this need tuning */ int i; vlc_dictionary_init( &new_dict, i_new_size ); for( i = 0; i < p_dict->i_size; i++ ) { p_entry = p_dict->p_entries[i]; while( p_entry ) { vlc_dictionary_insert_impl_( &new_dict, p_entry->psz_key, p_entry->p_value, false /* To avoid multiple rebuild loop */); p_entry = p_entry->p_next; } } vlc_dictionary_clear( p_dict, NULL, NULL ); p_dict->i_size = new_dict.i_size; p_dict->p_entries = new_dict.p_entries; } } } static inline void vlc_dictionary_insert( vlc_dictionary_t * p_dict, const char * psz_key, void * p_value ) { vlc_dictionary_insert_impl_( p_dict, psz_key, p_value, true ); } static inline void vlc_dictionary_remove_value_for_key( const vlc_dictionary_t * p_dict, const char * psz_key, void ( * pf_free )( void * p_data, void * p_obj ), void * p_obj ) { if( !p_dict->p_entries ) return; int i_pos = DictHash( psz_key, p_dict->i_size ); vlc_dictionary_entry_t * p_entry = p_dict->p_entries[i_pos]; vlc_dictionary_entry_t * p_prev; if( !p_entry ) return; /* Not found, nothing to do */ /* Hash collision */ p_prev = NULL; do { if( !strcmp( psz_key, p_entry->psz_key ) ) { if( pf_free != NULL ) ( * pf_free )( p_entry->p_value, p_obj ); if( !p_prev ) p_dict->p_entries[i_pos] = p_entry->p_next; else p_prev->p_next = p_entry->p_next; free( p_entry->psz_key ); free( p_entry ); return; } p_prev = p_entry; p_entry = p_entry->p_next; } while( p_entry ); /* No key was found */ } #ifdef __cplusplus // C++ helpers template void vlc_delete_all( T &container ) { typename T::iterator it = container.begin(); while ( it != container.end() ) { delete *it; ++it; } container.clear(); } #endif #endif