121 lines
3.7 KiB
C++
121 lines
3.7 KiB
C++
#include "smoothcurve.h"
|
|
#include "qdebug.h"
|
|
|
|
QPainterPath SmoothCurve::createSmoothCurve(const QVector<QPointF> &points)
|
|
{
|
|
QPainterPath path;
|
|
int len = points.size();
|
|
if (len < 2) {
|
|
return path;
|
|
}
|
|
|
|
QVector<QPointF> firstControlPoints;
|
|
QVector<QPointF> secondControlPoints;
|
|
calculateControlPoints(points, &firstControlPoints, &secondControlPoints);
|
|
path.moveTo(points[0].x(), points[0].y());
|
|
|
|
for (int i = 0; i < len - 1; ++i) {
|
|
path.cubicTo(firstControlPoints[i], secondControlPoints[i], points[i + 1]);
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
QPainterPath SmoothCurve::createSmoothCurve2(const QVector<QPointF> &points)
|
|
{
|
|
//采用Qt原生方法不做任何处理
|
|
int count = points.count();
|
|
if (count == 0) {
|
|
return QPainterPath();
|
|
}
|
|
|
|
QPainterPath path(points.at(0));
|
|
for (int i = 0; i < count - 1; ++i) {
|
|
//控制点的 x 坐标为 sp 与 ep 的 x 坐标和的一半
|
|
//第一个控制点 c1 的 y 坐标为起始点 sp 的 y 坐标
|
|
//第二个控制点 c2 的 y 坐标为结束点 ep 的 y 坐标
|
|
QPointF sp = points.at(i);
|
|
QPointF ep = points.at(i + 1);
|
|
QPointF c1 = QPointF((sp.x() + ep.x()) / 2, sp.y());
|
|
QPointF c2 = QPointF((sp.x() + ep.x()) / 2, ep.y());
|
|
path.cubicTo(c1, c2, ep);
|
|
}
|
|
|
|
return path;
|
|
}
|
|
|
|
void SmoothCurve::calculateFirstControlPoints(double *&result, const double *rhs, int n)
|
|
{
|
|
result = new double[n];
|
|
double *tmp = new double[n];
|
|
double b = 2.0;
|
|
result[0] = rhs[0] / b;
|
|
|
|
for (int i = 1; i < n; ++i) {
|
|
tmp[i] = 1 / b;
|
|
b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
|
|
result[i] = (rhs[i] - result[i - 1]) / b;
|
|
}
|
|
|
|
for (int i = 1; i < n; ++i) {
|
|
result[n - i - 1] -= tmp[n - i] * result[n - i];
|
|
}
|
|
|
|
delete tmp;
|
|
}
|
|
|
|
void SmoothCurve::calculateControlPoints(const QVector<QPointF> &datas,
|
|
QVector<QPointF> *firstControlPoints,
|
|
QVector<QPointF> *secondControlPoints)
|
|
{
|
|
int n = datas.size() - 1;
|
|
for (int i = 0; i < n; ++i) {
|
|
firstControlPoints->append(QPointF());
|
|
secondControlPoints->append(QPointF());
|
|
}
|
|
|
|
if (n == 1) {
|
|
(*firstControlPoints)[0].rx() = (2 * datas[0].x() + datas[1].x()) / 3;
|
|
(*firstControlPoints)[0].ry() = (2 * datas[0].y() + datas[1].y()) / 3;
|
|
(*secondControlPoints)[0].rx() = 2 * (*firstControlPoints)[0].x() - datas[0].x();
|
|
(*secondControlPoints)[0].ry() = 2 * (*firstControlPoints)[0].y() - datas[0].y();
|
|
return;
|
|
}
|
|
|
|
double *xs = 0;
|
|
double *ys = 0;
|
|
double *rhsx = new double[n];
|
|
double *rhsy = new double[n];
|
|
|
|
for (int i = 1; i < n - 1; ++i) {
|
|
rhsx[i] = 4 * datas[i].x() + 2 * datas[i + 1].x();
|
|
rhsy[i] = 4 * datas[i].y() + 2 * datas[i + 1].y();
|
|
}
|
|
|
|
rhsx[0] = datas[0].x() + 2 * datas[1].x();
|
|
rhsx[n - 1] = (8 * datas[n - 1].x() + datas[n].x()) / 2.0;
|
|
rhsy[0] = datas[0].y() + 2 * datas[1].y();
|
|
rhsy[n - 1] = (8 * datas[n - 1].y() + datas[n].y()) / 2.0;
|
|
|
|
calculateFirstControlPoints(xs, rhsx, n);
|
|
calculateFirstControlPoints(ys, rhsy, n);
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
(*firstControlPoints)[i].rx() = xs[i];
|
|
(*firstControlPoints)[i].ry() = ys[i];
|
|
|
|
if (i < n - 1) {
|
|
(*secondControlPoints)[i].rx() = 2 * datas[i + 1].x() - xs[i + 1];
|
|
(*secondControlPoints)[i].ry() = 2 * datas[i + 1].y() - ys[i + 1];
|
|
} else {
|
|
(*secondControlPoints)[i].rx() = (datas[n].x() + xs[n - 1]) / 2;
|
|
(*secondControlPoints)[i].ry() = (datas[n].y() + ys[n - 1]) / 2;
|
|
}
|
|
}
|
|
|
|
delete xs;
|
|
delete ys;
|
|
delete rhsx;
|
|
delete rhsy;
|
|
}
|