qt_demoe/third/3rd_qwt/qwt_curve_fitter.h

140 lines
3.7 KiB
C++

/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
* Qwt Widget Library
* Copyright (C) 1997 Josef Wilgen
* Copyright (C) 2002 Uwe Rathmann
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the Qwt License, Version 1.0
*****************************************************************************/
#ifndef QWT_CURVE_FITTER_H
#define QWT_CURVE_FITTER_H
#include "qwt_global.h"
#include <qpolygon.h>
#include <qrect.h>
class QwtSpline;
/*!
\brief Abstract base class for a curve fitter
*/
class QWT_EXPORT QwtCurveFitter
{
public:
virtual ~QwtCurveFitter();
/*!
Find a curve which has the best fit to a series of data points
\param polygon Series of data points
\return Curve points
*/
virtual QPolygonF fitCurve( const QPolygonF &polygon ) const = 0;
protected:
QwtCurveFitter();
private:
QwtCurveFitter( const QwtCurveFitter & );
QwtCurveFitter &operator=( const QwtCurveFitter & );
};
/*!
\brief A curve fitter using cubic splines
*/
class QWT_EXPORT QwtSplineCurveFitter: public QwtCurveFitter
{
public:
/*!
Spline type
The default setting is Auto
\sa setFitMode(), FitMode()
*/
enum FitMode
{
/*!
Use the default spline algorithm for polygons with
increasing x values ( p[i-1] < p[i] ), otherwise use
a parametric spline algorithm.
*/
Auto,
//! Use a default spline algorithm
Spline,
//! Use a parametric spline algorithm
ParametricSpline
};
QwtSplineCurveFitter();
virtual ~QwtSplineCurveFitter();
void setFitMode( FitMode );
FitMode fitMode() const;
void setSpline( const QwtSpline& );
const QwtSpline &spline() const;
QwtSpline &spline();
void setSplineSize( int );
int splineSize() const;
virtual QPolygonF fitCurve( const QPolygonF & ) const;
private:
QPolygonF fitSpline( const QPolygonF & ) const;
QPolygonF fitParametric( const QPolygonF & ) const;
class PrivateData;
PrivateData *d_data;
};
/*!
\brief A curve fitter implementing Douglas and Peucker algorithm
The purpose of the Douglas and Peucker algorithm is that given a 'curve'
composed of line segments to find a curve not too dissimilar but that
has fewer points. The algorithm defines 'too dissimilar' based on the
maximum distance (tolerance) between the original curve and the
smoothed curve.
The runtime of the algorithm increases non linear ( worst case O( n*n ) )
and might be very slow for huge polygons. To avoid performance issues
it might be useful to split the polygon ( setChunkSize() ) and to run the algorithm
for these smaller parts. The disadvantage of having no interpolation
at the borders is for most use cases irrelevant.
The smoothed curve consists of a subset of the points that defined the
original curve.
In opposite to QwtSplineCurveFitter the Douglas and Peucker algorithm reduces
the number of points. By adjusting the tolerance parameter according to the
axis scales QwtSplineCurveFitter can be used to implement different
level of details to speed up painting of curves of many points.
*/
class QWT_EXPORT QwtWeedingCurveFitter: public QwtCurveFitter
{
public:
QwtWeedingCurveFitter( double tolerance = 1.0 );
virtual ~QwtWeedingCurveFitter();
void setTolerance( double );
double tolerance() const;
void setChunkSize( uint );
uint chunkSize() const;
virtual QPolygonF fitCurve( const QPolygonF & ) const;
private:
virtual QPolygonF simplify( const QPolygonF & ) const;
class Line;
class PrivateData;
PrivateData *d_data;
};
#endif