385 lines
8.3 KiB
C++
385 lines
8.3 KiB
C++
/* -*- mode: C++ ; c-file-style: "stroustrup" -*- *****************************
|
|
* Qwt Widget Library
|
|
* Copyright (C) 1997 Josef Wilgen
|
|
* Copyright (C) 2002 Uwe Rathmann
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the Qwt License, Version 1.0
|
|
*****************************************************************************/
|
|
|
|
#include "qwt_spline.h"
|
|
#include "qwt_math.h"
|
|
|
|
class QwtSpline::PrivateData
|
|
{
|
|
public:
|
|
PrivateData():
|
|
splineType( QwtSpline::Natural )
|
|
{
|
|
}
|
|
|
|
QwtSpline::SplineType splineType;
|
|
|
|
// coefficient vectors
|
|
QVector<double> a;
|
|
QVector<double> b;
|
|
QVector<double> c;
|
|
|
|
// control points
|
|
QPolygonF points;
|
|
};
|
|
|
|
static int lookup( double x, const QPolygonF &values )
|
|
{
|
|
#if 0
|
|
//qLowerBound/qHigherBound ???
|
|
#endif
|
|
int i1;
|
|
const int size = values.size();
|
|
|
|
if ( x <= values[0].x() )
|
|
i1 = 0;
|
|
else if ( x >= values[size - 2].x() )
|
|
i1 = size - 2;
|
|
else
|
|
{
|
|
i1 = 0;
|
|
int i2 = size - 2;
|
|
int i3 = 0;
|
|
|
|
while ( i2 - i1 > 1 )
|
|
{
|
|
i3 = i1 + ( ( i2 - i1 ) >> 1 );
|
|
|
|
if ( values[i3].x() > x )
|
|
i2 = i3;
|
|
else
|
|
i1 = i3;
|
|
}
|
|
}
|
|
return i1;
|
|
}
|
|
|
|
//! Constructor
|
|
QwtSpline::QwtSpline()
|
|
{
|
|
d_data = new PrivateData;
|
|
}
|
|
|
|
/*!
|
|
Copy constructor
|
|
\param other Spline used for initialization
|
|
*/
|
|
QwtSpline::QwtSpline( const QwtSpline& other )
|
|
{
|
|
d_data = new PrivateData( *other.d_data );
|
|
}
|
|
|
|
/*!
|
|
Assignment operator
|
|
\param other Spline used for initialization
|
|
\return *this
|
|
*/
|
|
QwtSpline &QwtSpline::operator=( const QwtSpline & other )
|
|
{
|
|
*d_data = *other.d_data;
|
|
return *this;
|
|
}
|
|
|
|
//! Destructor
|
|
QwtSpline::~QwtSpline()
|
|
{
|
|
delete d_data;
|
|
}
|
|
|
|
/*!
|
|
Select the algorithm used for calculating the spline
|
|
|
|
\param splineType Spline type
|
|
\sa splineType()
|
|
*/
|
|
void QwtSpline::setSplineType( SplineType splineType )
|
|
{
|
|
d_data->splineType = splineType;
|
|
}
|
|
|
|
/*!
|
|
\return the spline type
|
|
\sa setSplineType()
|
|
*/
|
|
QwtSpline::SplineType QwtSpline::splineType() const
|
|
{
|
|
return d_data->splineType;
|
|
}
|
|
|
|
/*!
|
|
\brief Calculate the spline coefficients
|
|
|
|
Depending on the value of \a periodic, this function
|
|
will determine the coefficients for a natural or a periodic
|
|
spline and store them internally.
|
|
|
|
\param points Points
|
|
\return true if successful
|
|
\warning The sequence of x (but not y) values has to be strictly monotone
|
|
increasing, which means <code>points[i].x() < points[i+1].x()</code>.
|
|
If this is not the case, the function will return false
|
|
*/
|
|
bool QwtSpline::setPoints( const QPolygonF& points )
|
|
{
|
|
const int size = points.size();
|
|
if ( size <= 2 )
|
|
{
|
|
reset();
|
|
return false;
|
|
}
|
|
|
|
d_data->points = points;
|
|
|
|
d_data->a.resize( size - 1 );
|
|
d_data->b.resize( size - 1 );
|
|
d_data->c.resize( size - 1 );
|
|
|
|
bool ok;
|
|
if ( d_data->splineType == Periodic )
|
|
ok = buildPeriodicSpline( points );
|
|
else
|
|
ok = buildNaturalSpline( points );
|
|
|
|
if ( !ok )
|
|
reset();
|
|
|
|
return ok;
|
|
}
|
|
|
|
/*!
|
|
\return Points, that have been by setPoints()
|
|
*/
|
|
QPolygonF QwtSpline::points() const
|
|
{
|
|
return d_data->points;
|
|
}
|
|
|
|
//! \return A coefficients
|
|
const QVector<double> &QwtSpline::coefficientsA() const
|
|
{
|
|
return d_data->a;
|
|
}
|
|
|
|
//! \return B coefficients
|
|
const QVector<double> &QwtSpline::coefficientsB() const
|
|
{
|
|
return d_data->b;
|
|
}
|
|
|
|
//! \return C coefficients
|
|
const QVector<double> &QwtSpline::coefficientsC() const
|
|
{
|
|
return d_data->c;
|
|
}
|
|
|
|
|
|
//! Free allocated memory and set size to 0
|
|
void QwtSpline::reset()
|
|
{
|
|
d_data->a.resize( 0 );
|
|
d_data->b.resize( 0 );
|
|
d_data->c.resize( 0 );
|
|
d_data->points.resize( 0 );
|
|
}
|
|
|
|
//! True if valid
|
|
bool QwtSpline::isValid() const
|
|
{
|
|
return d_data->a.size() > 0;
|
|
}
|
|
|
|
/*!
|
|
Calculate the interpolated function value corresponding
|
|
to a given argument x.
|
|
|
|
\param x Coordinate
|
|
\return Interpolated coordinate
|
|
*/
|
|
double QwtSpline::value( double x ) const
|
|
{
|
|
if ( d_data->a.size() == 0 )
|
|
return 0.0;
|
|
|
|
const int i = lookup( x, d_data->points );
|
|
|
|
const double delta = x - d_data->points[i].x();
|
|
return( ( ( ( d_data->a[i] * delta ) + d_data->b[i] )
|
|
* delta + d_data->c[i] ) * delta + d_data->points[i].y() );
|
|
}
|
|
|
|
/*!
|
|
\brief Determines the coefficients for a natural spline
|
|
\return true if successful
|
|
*/
|
|
bool QwtSpline::buildNaturalSpline( const QPolygonF &points )
|
|
{
|
|
int i;
|
|
|
|
const QPointF *p = points.data();
|
|
const int size = points.size();
|
|
|
|
double *a = d_data->a.data();
|
|
double *b = d_data->b.data();
|
|
double *c = d_data->c.data();
|
|
|
|
// set up tridiagonal equation system; use coefficient
|
|
// vectors as temporary buffers
|
|
QVector<double> h( size - 1 );
|
|
for ( i = 0; i < size - 1; i++ )
|
|
{
|
|
h[i] = p[i+1].x() - p[i].x();
|
|
if ( h[i] <= 0 )
|
|
return false;
|
|
}
|
|
|
|
QVector<double> d( size - 1 );
|
|
double dy1 = ( p[1].y() - p[0].y() ) / h[0];
|
|
for ( i = 1; i < size - 1; i++ )
|
|
{
|
|
b[i] = c[i] = h[i];
|
|
a[i] = 2.0 * ( h[i-1] + h[i] );
|
|
|
|
const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
|
d[i] = 6.0 * ( dy1 - dy2 );
|
|
dy1 = dy2;
|
|
}
|
|
|
|
//
|
|
// solve it
|
|
//
|
|
|
|
// L-U Factorization
|
|
for ( i = 1; i < size - 2; i++ )
|
|
{
|
|
c[i] /= a[i];
|
|
a[i+1] -= b[i] * c[i];
|
|
}
|
|
|
|
// forward elimination
|
|
QVector<double> s( size );
|
|
s[1] = d[1];
|
|
for ( i = 2; i < size - 1; i++ )
|
|
s[i] = d[i] - c[i-1] * s[i-1];
|
|
|
|
// backward elimination
|
|
s[size - 2] = - s[size - 2] / a[size - 2];
|
|
for ( i = size - 3; i > 0; i-- )
|
|
s[i] = - ( s[i] + b[i] * s[i+1] ) / a[i];
|
|
s[size - 1] = s[0] = 0.0;
|
|
|
|
//
|
|
// Finally, determine the spline coefficients
|
|
//
|
|
for ( i = 0; i < size - 1; i++ )
|
|
{
|
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
|
b[i] = 0.5 * s[i];
|
|
c[i] = ( p[i+1].y() - p[i].y() ) / h[i]
|
|
- ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
\brief Determines the coefficients for a periodic spline
|
|
\return true if successful
|
|
*/
|
|
bool QwtSpline::buildPeriodicSpline( const QPolygonF &points )
|
|
{
|
|
int i;
|
|
|
|
const QPointF *p = points.data();
|
|
const int size = points.size();
|
|
|
|
double *a = d_data->a.data();
|
|
double *b = d_data->b.data();
|
|
double *c = d_data->c.data();
|
|
|
|
QVector<double> d( size - 1 );
|
|
QVector<double> h( size - 1 );
|
|
QVector<double> s( size );
|
|
|
|
//
|
|
// setup equation system; use coefficient
|
|
// vectors as temporary buffers
|
|
//
|
|
for ( i = 0; i < size - 1; i++ )
|
|
{
|
|
h[i] = p[i+1].x() - p[i].x();
|
|
if ( h[i] <= 0.0 )
|
|
return false;
|
|
}
|
|
|
|
const int imax = size - 2;
|
|
double htmp = h[imax];
|
|
double dy1 = ( p[0].y() - p[imax].y() ) / htmp;
|
|
for ( i = 0; i <= imax; i++ )
|
|
{
|
|
b[i] = c[i] = h[i];
|
|
a[i] = 2.0 * ( htmp + h[i] );
|
|
const double dy2 = ( p[i+1].y() - p[i].y() ) / h[i];
|
|
d[i] = 6.0 * ( dy1 - dy2 );
|
|
dy1 = dy2;
|
|
htmp = h[i];
|
|
}
|
|
|
|
//
|
|
// solve it
|
|
//
|
|
|
|
// L-U Factorization
|
|
a[0] = qSqrt( a[0] );
|
|
c[0] = h[imax] / a[0];
|
|
double sum = 0;
|
|
|
|
for ( i = 0; i < imax - 1; i++ )
|
|
{
|
|
b[i] /= a[i];
|
|
if ( i > 0 )
|
|
c[i] = - c[i-1] * b[i-1] / a[i];
|
|
a[i+1] = qSqrt( a[i+1] - qwtSqr( b[i] ) );
|
|
sum += qwtSqr( c[i] );
|
|
}
|
|
b[imax-1] = ( b[imax-1] - c[imax-2] * b[imax-2] ) / a[imax-1];
|
|
a[imax] = qSqrt( a[imax] - qwtSqr( b[imax-1] ) - sum );
|
|
|
|
|
|
// forward elimination
|
|
s[0] = d[0] / a[0];
|
|
sum = 0;
|
|
for ( i = 1; i < imax; i++ )
|
|
{
|
|
s[i] = ( d[i] - b[i-1] * s[i-1] ) / a[i];
|
|
sum += c[i-1] * s[i-1];
|
|
}
|
|
s[imax] = ( d[imax] - b[imax-1] * s[imax-1] - sum ) / a[imax];
|
|
|
|
|
|
// backward elimination
|
|
s[imax] = - s[imax] / a[imax];
|
|
s[imax-1] = -( s[imax-1] + b[imax-1] * s[imax] ) / a[imax-1];
|
|
for ( i = imax - 2; i >= 0; i-- )
|
|
s[i] = - ( s[i] + b[i] * s[i+1] + c[i] * s[imax] ) / a[i];
|
|
|
|
//
|
|
// Finally, determine the spline coefficients
|
|
//
|
|
s[size-1] = s[0];
|
|
for ( i = 0; i < size - 1; i++ )
|
|
{
|
|
a[i] = ( s[i+1] - s[i] ) / ( 6.0 * h[i] );
|
|
b[i] = 0.5 * s[i];
|
|
c[i] = ( p[i+1].y() - p[i].y() )
|
|
/ h[i] - ( s[i+1] + 2.0 * s[i] ) * h[i] / 6.0;
|
|
}
|
|
|
|
return true;
|
|
}
|