// seedrandom.js version 2.2. // Author: David Bau // Date: 2013 Jun 15 // // Defines a method Math.seedrandom() that, when called, substitutes // an explicitly seeded RC4-based algorithm for Math.random(). Also // supports automatic seeding from local or network sources of entropy. // // http://davidbau.com/encode/seedrandom.js // http://davidbau.com/encode/seedrandom-min.js // // Usage: // // // // Math.seedrandom('yay.'); Sets Math.random to a function that is // initialized using the given explicit seed. // // Math.seedrandom(); Sets Math.random to a function that is // seeded using the current time, dom state, // and other accumulated local entropy. // The generated seed string is returned. // // Math.seedrandom('yowza.', true); // Seeds using the given explicit seed mixed // together with accumulated entropy. // // Seeds using urandom bits from a server. // // More advanced examples: // // Math.seedrandom("hello."); // Use "hello." as the seed. // document.write(Math.random()); // Always 0.9282578795792454 // document.write(Math.random()); // Always 0.3752569768646784 // var rng1 = Math.random; // Remember the current prng. // // var autoseed = Math.seedrandom(); // New prng with an automatic seed. // document.write(Math.random()); // Pretty much unpredictable x. // // Math.random = rng1; // Continue "hello." prng sequence. // document.write(Math.random()); // Always 0.7316977468919549 // // Math.seedrandom(autoseed); // Restart at the previous seed. // document.write(Math.random()); // Repeat the 'unpredictable' x. // // function reseed(event, count) { // Define a custom entropy collector. // var t = []; // function w(e) { // t.push([e.pageX, e.pageY, +new Date]); // if (t.length < count) { return; } // document.removeEventListener(event, w); // Math.seedrandom(t, true); // Mix in any previous entropy. // } // document.addEventListener(event, w); // } // reseed('mousemove', 100); // Reseed after 100 mouse moves. // // Version notes: // // The random number sequence is the same as version 1.0 for string seeds. // Version 2.0 changed the sequence for non-string seeds. // Version 2.1 speeds seeding and uses window.crypto to autoseed if present. // Version 2.2 alters non-crypto autoseeding to sweep up entropy from plugins. // // The standard ARC4 key scheduler cycles short keys, which means that // seedrandom('ab') is equivalent to seedrandom('abab') and 'ababab'. // Therefore it is a good idea to add a terminator to avoid trivial // equivalences on short string seeds, e.g., Math.seedrandom(str + '\0'). // Starting with version 2.0, a terminator is added automatically for // non-string seeds, so seeding with the number 111 is the same as seeding // with '111\0'. // // When seedrandom() is called with zero args, it uses a seed // drawn from the browser crypto object if present. If there is no // crypto support, seedrandom() uses the current time, the native rng, // and a walk of several DOM objects to collect a few bits of entropy. // // Each time the one- or two-argument forms of seedrandom are called, // entropy from the passed seed is accumulated in a pool to help generate // future seeds for the zero- and two-argument forms of seedrandom. // // On speed - This javascript implementation of Math.random() is about // 3-10x slower than the built-in Math.random() because it is not native // code, but that is typically fast enough. Some details (timings on // Chrome 25 on a 2010 vintage macbook): // // seeded Math.random() - avg less than 0.0002 milliseconds per call // seedrandom('explicit.') - avg less than 0.2 milliseconds per call // seedrandom('explicit.', true) - avg less than 0.2 milliseconds per call // seedrandom() with crypto - avg less than 0.2 milliseconds per call // // Autoseeding without crypto is somewhat slower, about 20-30 milliseconds on // a 2012 windows 7 1.5ghz i5 laptop, as seen on Firefox 19, IE 10, and Opera. // Seeded rng calls themselves are fast across these browsers, with slowest // numbers on Opera at about 0.0005 ms per seeded Math.random(). // // LICENSE (BSD): // // Copyright 2013 David Bau, all rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of this module nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /** * All code is in an anonymous closure to keep the global namespace clean. */ (function ( global, pool, math, width, chunks, digits) { // // The following constants are related to IEEE 754 limits. // var startdenom = math.pow(width, chunks), significance = math.pow(2, digits), overflow = significance * 2, mask = width - 1; // // seedrandom() // This is the seedrandom function described above. // math['seedrandom'] = function(seed, use_entropy) { var key = []; // Flatten the seed string or build one from local entropy if needed. var shortseed = mixkey(flatten( use_entropy ? [seed, tostring(pool)] : 0 in arguments ? seed : autoseed(), 3), key); // Use the seed to initialize an ARC4 generator. var arc4 = new ARC4(key); // Mix the randomness into accumulated entropy. mixkey(tostring(arc4.S), pool); // Override Math.random // This function returns a random double in [0, 1) that contains // randomness in every bit of the mantissa of the IEEE 754 value. math['random'] = function() { // Closure to return a random double: var n = arc4.g(chunks), // Start with a numerator n < 2 ^ 48 d = startdenom, // and denominator d = 2 ^ 48. x = 0; // and no 'extra last byte'. while (n < significance) { // Fill up all significant digits by n = (n + x) * width; // shifting numerator and d *= width; // denominator and generating a x = arc4.g(1); // new least-significant-byte. } while (n >= overflow) { // To avoid rounding up, before adding n /= 2; // last byte, shift everything d /= 2; // right using integer math until x >>>= 1; // we have exactly the desired bits. } return (n + x) / d; // Form the number within [0, 1). }; // Return the seed that was used return shortseed; }; // // ARC4 // // An ARC4 implementation. The constructor takes a key in the form of // an array of at most (width) integers that should be 0 <= x < (width). // // The g(count) method returns a pseudorandom integer that concatenates // the next (count) outputs from ARC4. Its return value is a number x // that is in the range 0 <= x < (width ^ count). // /** @constructor */ function ARC4(key) { var t, keylen = key.length, me = this, i = 0, j = me.i = me.j = 0, s = me.S = []; // The empty key [] is treated as [0]. if (!keylen) { key = [keylen++]; } // Set up S using the standard key scheduling algorithm. while (i < width) { s[i] = i++; } for (i = 0; i < width; i++) { s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))]; s[j] = t; } // The "g" method returns the next (count) outputs as one number. (me.g = function(count) { // Using instance members instead of closure state nearly doubles speed. var t, r = 0, i = me.i, j = me.j, s = me.S; while (count--) { t = s[i = mask & (i + 1)]; r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s[j] = t))]; } me.i = i; me.j = j; return r; // For robust unpredictability discard an initial batch of values. // See http://www.rsa.com/rsalabs/node.asp?id=2009 })(width); } // // flatten() // Converts an object tree to nested arrays of strings. // function flatten(obj, depth) { var result = [], typ = (typeof obj)[0], prop; if (depth && typ == 'o') { for (prop in obj) { try { result.push(flatten(obj[prop], depth - 1)); } catch (e) {} } } return (result.length ? result : typ == 's' ? obj : obj + '\0'); } // // mixkey() // Mixes a string seed into a key that is an array of integers, and // returns a shortened string seed that is equivalent to the result key. // function mixkey(seed, key) { var stringseed = seed + '', smear, j = 0; while (j < stringseed.length) { key[mask & j] = mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt(j++)); } return tostring(key); } // // autoseed() // Returns an object for autoseeding, using window.crypto if available. // /** @param {Uint8Array=} seed */ function autoseed(seed) { try { global.crypto.getRandomValues(seed = new Uint8Array(width)); return tostring(seed); } catch (e) { return [+new Date, global, global.navigator.plugins, global.screen, tostring(pool)]; } } // // tostring() // Converts an array of charcodes to a string // function tostring(a) { return String.fromCharCode.apply(0, a); } // // When seedrandom.js is loaded, we immediately mix a few bits // from the built-in RNG into the entropy pool. Because we do // not want to intefere with determinstic PRNG state later, // seedrandom will not call math.random on its own again after // initialization. // mixkey(math.random(), pool); // End anonymous scope, and pass initial values. })( this, // global window object [], // pool: entropy pool starts empty Math, // math: package containing random, pow, and seedrandom 256, // width: each RC4 output is 0 <= x < 256 6, // chunks: at least six RC4 outputs for each double 52 // digits: there are 52 significant digits in a double );