solvespace/src/file.cpp

700 lines
27 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Routines to write and read our .slvs file format.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
#define VERSION_STRING "\261\262\263" "SolveSpaceREVa"
static int StrStartsWith(const char *str, const char *start) {
return memcmp(str, start, strlen(start)) == 0;
}
//-----------------------------------------------------------------------------
// Clear and free all the dynamic memory associated with our currently-loaded
// sketch. This does not leave the program in an acceptable state (with the
// references created, and so on), so anyone calling this must fix that later.
//-----------------------------------------------------------------------------
void SolveSpace::ClearExisting(void) {
UndoClearStack(&redo);
UndoClearStack(&undo);
Group *g;
for(g = SK.group.First(); g; g = SK.group.NextAfter(g)) {
g->Clear();
}
SK.constraint.Clear();
SK.request.Clear();
SK.group.Clear();
SK.style.Clear();
SK.entity.Clear();
SK.param.Clear();
}
hGroup SolveSpace::CreateDefaultDrawingGroup(void) {
Group g;
ZERO(&g);
// And an empty group, for the first stuff the user draws.
g.visible = true;
g.type = Group::DRAWING_WORKPLANE;
g.subtype = Group::WORKPLANE_BY_POINT_ORTHO;
g.predef.q = Quaternion::From(1, 0, 0, 0);
hRequest hr = Request::HREQUEST_REFERENCE_XY;
g.predef.origin = hr.entity(1);
g.name.strcpy("sketch-in-plane");
SK.group.AddAndAssignId(&g);
SK.GetGroup(g.h)->activeWorkplane = g.h.entity(0);
return g.h;
}
void SolveSpace::NewFile(void) {
ClearExisting();
// Our initial group, that contains the references.
Group g;
memset(&g, 0, sizeof(g));
g.visible = true;
g.name.strcpy("#references");
g.type = Group::DRAWING_3D;
g.h = Group::HGROUP_REFERENCES;
SK.group.Add(&g);
// Let's create three two-d coordinate systems, for the coordinate
// planes; these are our references, present in every sketch.
Request r;
ZERO(&r);
r.type = Request::WORKPLANE;
r.group = Group::HGROUP_REFERENCES;
r.workplane = Entity::FREE_IN_3D;
r.h = Request::HREQUEST_REFERENCE_XY;
SK.request.Add(&r);
r.h = Request::HREQUEST_REFERENCE_YZ;
SK.request.Add(&r);
r.h = Request::HREQUEST_REFERENCE_ZX;
SK.request.Add(&r);
CreateDefaultDrawingGroup();
}
const SolveSpace::SaveTable SolveSpace::SAVED[] = {
{ 'g', "Group.h.v", 'x', &(SS.sv.g.h.v) },
{ 'g', "Group.type", 'd', &(SS.sv.g.type) },
{ 'g', "Group.order", 'd', &(SS.sv.g.order) },
{ 'g', "Group.name", 'N', &(SS.sv.g.name) },
{ 'g', "Group.activeWorkplane.v", 'x', &(SS.sv.g.activeWorkplane.v) },
{ 'g', "Group.opA.v", 'x', &(SS.sv.g.opA.v) },
{ 'g', "Group.opB.v", 'x', &(SS.sv.g.opB.v) },
{ 'g', "Group.valA", 'f', &(SS.sv.g.valA) },
{ 'g', "Group.valB", 'f', &(SS.sv.g.valB) },
{ 'g', "Group.valC", 'f', &(SS.sv.g.valB) },
{ 'g', "Group.color", 'c', &(SS.sv.g.color) },
{ 'g', "Group.subtype", 'd', &(SS.sv.g.subtype) },
{ 'g', "Group.skipFirst", 'b', &(SS.sv.g.skipFirst) },
{ 'g', "Group.meshCombine", 'd', &(SS.sv.g.meshCombine) },
{ 'g', "Group.forceToMesh", 'd', &(SS.sv.g.forceToMesh) },
{ 'g', "Group.predef.q.w", 'f', &(SS.sv.g.predef.q.w) },
{ 'g', "Group.predef.q.vx", 'f', &(SS.sv.g.predef.q.vx) },
{ 'g', "Group.predef.q.vy", 'f', &(SS.sv.g.predef.q.vy) },
{ 'g', "Group.predef.q.vz", 'f', &(SS.sv.g.predef.q.vz) },
{ 'g', "Group.predef.origin.v", 'x', &(SS.sv.g.predef.origin.v) },
{ 'g', "Group.predef.entityB.v", 'x', &(SS.sv.g.predef.entityB.v) },
{ 'g', "Group.predef.entityC.v", 'x', &(SS.sv.g.predef.entityC.v) },
{ 'g', "Group.predef.swapUV", 'b', &(SS.sv.g.predef.swapUV) },
{ 'g', "Group.predef.negateU", 'b', &(SS.sv.g.predef.negateU) },
{ 'g', "Group.predef.negateV", 'b', &(SS.sv.g.predef.negateV) },
{ 'g', "Group.visible", 'b', &(SS.sv.g.visible) },
{ 'g', "Group.suppress", 'b', &(SS.sv.g.suppress) },
{ 'g', "Group.relaxConstraints", 'b', &(SS.sv.g.relaxConstraints) },
{ 'g', "Group.allDimsReference", 'b', &(SS.sv.g.allDimsReference) },
{ 'g', "Group.scale", 'f', &(SS.sv.g.scale) },
{ 'g', "Group.remap", 'M', &(SS.sv.g.remap) },
{ 'g', "Group.impFile", 'P', &(SS.sv.g.impFile) },
{ 'g', "Group.impFileRel", 'P', &(SS.sv.g.impFileRel) },
{ 'p', "Param.h.v.", 'x', &(SS.sv.p.h.v) },
{ 'p', "Param.val", 'f', &(SS.sv.p.val) },
{ 'r', "Request.h.v", 'x', &(SS.sv.r.h.v) },
{ 'r', "Request.type", 'd', &(SS.sv.r.type) },
{ 'r', "Request.extraPoints", 'd', &(SS.sv.r.extraPoints) },
{ 'r', "Request.workplane.v", 'x', &(SS.sv.r.workplane.v) },
{ 'r', "Request.group.v", 'x', &(SS.sv.r.group.v) },
{ 'r', "Request.construction", 'b', &(SS.sv.r.construction) },
{ 'r', "Request.style", 'x', &(SS.sv.r.style) },
{ 'r', "Request.str", 'N', &(SS.sv.r.str) },
{ 'r', "Request.font", 'N', &(SS.sv.r.font) },
{ 'e', "Entity.h.v", 'x', &(SS.sv.e.h.v) },
{ 'e', "Entity.type", 'd', &(SS.sv.e.type) },
{ 'e', "Entity.construction", 'b', &(SS.sv.e.construction) },
{ 'e', "Entity.style", 'x', &(SS.sv.e.style) },
{ 'e', "Entity.str", 'N', &(SS.sv.e.str) },
{ 'e', "Entity.font", 'N', &(SS.sv.e.font) },
{ 'e', "Entity.point[0].v", 'x', &(SS.sv.e.point[0].v) },
{ 'e', "Entity.point[1].v", 'x', &(SS.sv.e.point[1].v) },
{ 'e', "Entity.point[2].v", 'x', &(SS.sv.e.point[2].v) },
{ 'e', "Entity.point[3].v", 'x', &(SS.sv.e.point[3].v) },
{ 'e', "Entity.point[4].v", 'x', &(SS.sv.e.point[4].v) },
{ 'e', "Entity.point[5].v", 'x', &(SS.sv.e.point[5].v) },
{ 'e', "Entity.point[6].v", 'x', &(SS.sv.e.point[6].v) },
{ 'e', "Entity.point[7].v", 'x', &(SS.sv.e.point[7].v) },
{ 'e', "Entity.point[8].v", 'x', &(SS.sv.e.point[8].v) },
{ 'e', "Entity.point[9].v", 'x', &(SS.sv.e.point[9].v) },
{ 'e', "Entity.point[10].v", 'x', &(SS.sv.e.point[10].v) },
{ 'e', "Entity.point[11].v", 'x', &(SS.sv.e.point[11].v) },
{ 'e', "Entity.extraPoints", 'd', &(SS.sv.e.extraPoints) },
{ 'e', "Entity.normal.v", 'x', &(SS.sv.e.normal.v) },
{ 'e', "Entity.distance.v", 'x', &(SS.sv.e.distance.v) },
{ 'e', "Entity.workplane.v", 'x', &(SS.sv.e.workplane.v) },
{ 'e', "Entity.actPoint.x", 'f', &(SS.sv.e.actPoint.x) },
{ 'e', "Entity.actPoint.y", 'f', &(SS.sv.e.actPoint.y) },
{ 'e', "Entity.actPoint.z", 'f', &(SS.sv.e.actPoint.z) },
{ 'e', "Entity.actNormal.w", 'f', &(SS.sv.e.actNormal.w) },
{ 'e', "Entity.actNormal.vx", 'f', &(SS.sv.e.actNormal.vx) },
{ 'e', "Entity.actNormal.vy", 'f', &(SS.sv.e.actNormal.vy) },
{ 'e', "Entity.actNormal.vz", 'f', &(SS.sv.e.actNormal.vz) },
{ 'e', "Entity.actDistance", 'f', &(SS.sv.e.actDistance) },
{ 'e', "Entity.actVisible", 'b', &(SS.sv.e.actVisible), },
{ 'c', "Constraint.h.v", 'x', &(SS.sv.c.h.v) },
{ 'c', "Constraint.type", 'd', &(SS.sv.c.type) },
{ 'c', "Constraint.group.v", 'x', &(SS.sv.c.group.v) },
{ 'c', "Constraint.workplane.v", 'x', &(SS.sv.c.workplane.v) },
{ 'c', "Constraint.valA", 'f', &(SS.sv.c.valA) },
{ 'c', "Constraint.ptA.v", 'x', &(SS.sv.c.ptA.v) },
{ 'c', "Constraint.ptB.v", 'x', &(SS.sv.c.ptB.v) },
{ 'c', "Constraint.entityA.v", 'x', &(SS.sv.c.entityA.v) },
{ 'c', "Constraint.entityB.v", 'x', &(SS.sv.c.entityB.v) },
{ 'c', "Constraint.entityC.v", 'x', &(SS.sv.c.entityC.v) },
{ 'c', "Constraint.entityD.v", 'x', &(SS.sv.c.entityD.v) },
{ 'c', "Constraint.other", 'b', &(SS.sv.c.other) },
{ 'c', "Constraint.other2", 'b', &(SS.sv.c.other2) },
{ 'c', "Constraint.reference", 'b', &(SS.sv.c.reference) },
{ 'c', "Constraint.comment", 'N', &(SS.sv.c.comment) },
{ 'c', "Constraint.disp.offset.x", 'f', &(SS.sv.c.disp.offset.x) },
{ 'c', "Constraint.disp.offset.y", 'f', &(SS.sv.c.disp.offset.y) },
{ 'c', "Constraint.disp.offset.z", 'f', &(SS.sv.c.disp.offset.z) },
{ 'c', "Constraint.disp.style", 'x', &(SS.sv.c.disp.style) },
{ 's', "Style.h.v", 'x', &(SS.sv.s.h.v) },
{ 's', "Style.name", 'N', &(SS.sv.s.name) },
{ 's', "Style.width", 'f', &(SS.sv.s.width) },
{ 's', "Style.widthAs", 'd', &(SS.sv.s.widthAs) },
{ 's', "Style.textHeight", 'f', &(SS.sv.s.textHeight) },
{ 's', "Style.textHeightAs", 'd', &(SS.sv.s.textHeightAs) },
{ 's', "Style.textAngle", 'f', &(SS.sv.s.textAngle) },
{ 's', "Style.textOrigin", 'x', &(SS.sv.s.textOrigin) },
{ 's', "Style.color", 'c', &(SS.sv.s.color) },
{ 's', "Style.fillColor", 'c', &(SS.sv.s.fillColor) },
{ 's', "Style.filled", 'b', &(SS.sv.s.filled) },
{ 's', "Style.visible", 'b', &(SS.sv.s.visible) },
{ 's', "Style.exportable", 'b', &(SS.sv.s.exportable) },
{ 0, NULL, 0, NULL }
};
union SAVEDptr {
IdList<EntityMap,EntityId> M;
NameStr N;
char P[MAX_PATH];
bool b;
RgbColor c;
int d;
double f;
uint32_t x;
};
void SolveSpace::SaveUsingTable(int type) {
int i;
for(i = 0; SAVED[i].type != 0; i++) {
if(SAVED[i].type != type) continue;
int fmt = SAVED[i].fmt;
union SAVEDptr *p = (union SAVEDptr *)SAVED[i].ptr;
// Any items that aren't specified are assumed to be zero
if(fmt == 'N' && p->N.str[0] == '\0') continue;
if(fmt == 'd' && p->d == 0) continue;
if(fmt == 'f' && EXACT(p->f == 0.0)) continue;
if(fmt == 'x' && p->x == 0) continue;
fprintf(fh, "%s=", SAVED[i].desc);
switch(fmt) {
case 'N': fprintf(fh, "%s", p->N.str); break;
case 'P': fprintf(fh, "%s", p->P); break;
case 'b': fprintf(fh, "%d", p->b ? 1 : 0); break;
case 'c': fprintf(fh, "%08x", p->c.ToPackedInt()); break;
case 'd': fprintf(fh, "%d", p->d); break;
case 'f': fprintf(fh, "%.20f", p->f); break;
case 'x': fprintf(fh, "%08x", p->x); break;
case 'M': {
int j;
fprintf(fh, "{\n");
for(j = 0; j < p->M.n; j++) {
EntityMap *em = &(p->M.elem[j]);
2015-03-29 00:30:52 +00:00
fprintf(fh, " %d %08x %d\n",
em->h.v, em->input.v, em->copyNumber);
}
fprintf(fh, "}");
break;
}
default: oops();
}
fprintf(fh, "\n");
}
}
bool SolveSpace::SaveToFile(const char *filename) {
// Make sure all the entities are regenerated up to date, since they
// will be exported. We reload the imported files because that rewrites
// the impFileRel for our possibly-new filename.
SS.ScheduleShowTW();
SS.ReloadAllImported();
SS.GenerateAll(0, INT_MAX);
fh = fopen(filename, "wb");
2015-03-29 00:30:52 +00:00
if(!fh) {
Error("Couldn't write to file '%s'", filename);
return false;
}
fprintf(fh, "%s\n\n\n", VERSION_STRING);
int i, j;
for(i = 0; i < SK.group.n; i++) {
sv.g = SK.group.elem[i];
SaveUsingTable('g');
fprintf(fh, "AddGroup\n\n");
}
for(i = 0; i < SK.param.n; i++) {
sv.p = SK.param.elem[i];
SaveUsingTable('p');
fprintf(fh, "AddParam\n\n");
}
for(i = 0; i < SK.request.n; i++) {
sv.r = SK.request.elem[i];
SaveUsingTable('r');
fprintf(fh, "AddRequest\n\n");
}
for(i = 0; i < SK.entity.n; i++) {
(SK.entity.elem[i]).CalculateNumerical(true);
sv.e = SK.entity.elem[i];
SaveUsingTable('e');
fprintf(fh, "AddEntity\n\n");
}
for(i = 0; i < SK.constraint.n; i++) {
sv.c = SK.constraint.elem[i];
SaveUsingTable('c');
fprintf(fh, "AddConstraint\n\n");
}
for(i = 0; i < SK.style.n; i++) {
sv.s = SK.style.elem[i];
if(sv.s.h.v >= Style::FIRST_CUSTOM) {
SaveUsingTable('s');
fprintf(fh, "AddStyle\n\n");
}
}
// A group will have either a mesh or a shell, but not both; but the code
// to print either of those just does nothing if the mesh/shell is empty.
SMesh *m = &(SK.group.elem[SK.group.n-1].runningMesh);
for(i = 0; i < m->l.n; i++) {
STriangle *tr = &(m->l.elem[i]);
fprintf(fh, "Triangle %08x %08x "
"%.20f %.20f %.20f %.20f %.20f %.20f %.20f %.20f %.20f\n",
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
tr->meta.face, tr->meta.color.ToPackedInt(),
CO(tr->a), CO(tr->b), CO(tr->c));
}
SShell *s = &(SK.group.elem[SK.group.n-1].runningShell);
SSurface *srf;
for(srf = s->surface.First(); srf; srf = s->surface.NextAfter(srf)) {
fprintf(fh, "Surface %08x %08x %08x %d %d\n",
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
srf->h.v, srf->color.ToPackedInt(), srf->face, srf->degm, srf->degn);
for(i = 0; i <= srf->degm; i++) {
for(j = 0; j <= srf->degn; j++) {
fprintf(fh, "SCtrl %d %d %.20f %.20f %.20f Weight %20.20f\n",
i, j, CO(srf->ctrl[i][j]), srf->weight[i][j]);
}
}
2015-03-29 00:30:52 +00:00
STrimBy *stb;
for(stb = srf->trim.First(); stb; stb = srf->trim.NextAfter(stb)) {
fprintf(fh, "TrimBy %08x %d %.20f %.20f %.20f %.20f %.20f %.20f\n",
stb->curve.v, stb->backwards ? 1 : 0,
CO(stb->start), CO(stb->finish));
}
fprintf(fh, "AddSurface\n");
}
SCurve *sc;
for(sc = s->curve.First(); sc; sc = s->curve.NextAfter(sc)) {
fprintf(fh, "Curve %08x %d %d %08x %08x\n",
sc->h.v,
sc->isExact ? 1 : 0, sc->exact.deg,
sc->surfA.v, sc->surfB.v);
if(sc->isExact) {
for(i = 0; i <= sc->exact.deg; i++) {
fprintf(fh, "CCtrl %d %.20f %.20f %.20f Weight %.20f\n",
i, CO(sc->exact.ctrl[i]), sc->exact.weight[i]);
}
}
SCurvePt *scpt;
for(scpt = sc->pts.First(); scpt; scpt = sc->pts.NextAfter(scpt)) {
fprintf(fh, "CurvePt %d %.20f %.20f %.20f\n",
scpt->vertex ? 1 : 0, CO(scpt->p));
}
fprintf(fh, "AddCurve\n");
}
fclose(fh);
return true;
}
void SolveSpace::LoadUsingTable(char *key, char *val) {
int i;
for(i = 0; SAVED[i].type != 0; i++) {
if(strcmp(SAVED[i].desc, key)==0) {
union SAVEDptr *p = (union SAVEDptr *)SAVED[i].ptr;
unsigned int u = 0;
switch(SAVED[i].fmt) {
case 'N': p->N.strcpy(val); break;
case 'b': p->b = (atoi(val) != 0); break;
case 'd': p->d = atoi(val); break;
case 'f': p->f = atof(val); break;
case 'x': sscanf(val, "%x", &u); p->x = u; break;
case 'c':
sscanf(val, "%x", &u);
p->c = RgbColor::FromPackedInt(u);
break;
case 'P':
if(strlen(val)+1 < MAX_PATH) strcpy(p->P, val);
break;
case 'M': {
// Don't clear this list! When the group gets added, it
// makes a shallow copy, so that would result in us
// freeing memory that we want to keep around. Just
// zero it out so that new memory is allocated.
memset(&(p->M), 0, sizeof(p->M));
for(;;) {
EntityMap em;
char line2[1024];
if (fgets(line2, (int)sizeof(line2), fh) == NULL)
break;
if(sscanf(line2, "%d %x %d", &(em.h.v), &(em.input.v),
&(em.copyNumber)) == 3)
{
p->M.Add(&em);
} else {
break;
}
}
break;
}
default: oops();
}
break;
}
}
if(SAVED[i].type == 0) {
fileLoadError = true;
}
}
bool SolveSpace::LoadFromFile(const char *filename) {
allConsistent = false;
fileLoadError = false;
fh = fopen(filename, "rb");
2015-03-29 00:30:52 +00:00
if(!fh) {
Error("Couldn't read from file '%s'", filename);
return false;
}
ClearExisting();
memset(&sv, 0, sizeof(sv));
sv.g.scale = 1; // default is 1, not 0; so legacy files need this
char line[1024];
while(fgets(line, (int)sizeof(line), fh)) {
char *s = strchr(line, '\n');
if(s) *s = '\0';
// We should never get files with \r characters in them, but mailers
// will sometimes mangle attachments.
s = strchr(line, '\r');
if(s) *s = '\0';
if(*line == '\0') continue;
2015-03-29 00:30:52 +00:00
char *e = strchr(line, '=');
if(e) {
*e = '\0';
char *key = line, *val = e+1;
LoadUsingTable(key, val);
} else if(strcmp(line, "AddGroup")==0) {
SK.group.Add(&(sv.g));
ZERO(&(sv.g));
sv.g.scale = 1; // default is 1, not 0; so legacy files need this
} else if(strcmp(line, "AddParam")==0) {
// params are regenerated, but we want to preload the values
// for initial guesses
SK.param.Add(&(sv.p));
ZERO(&(sv.p));
} else if(strcmp(line, "AddEntity")==0) {
// entities are regenerated
} else if(strcmp(line, "AddRequest")==0) {
SK.request.Add(&(sv.r));
ZERO(&(sv.r));
} else if(strcmp(line, "AddConstraint")==0) {
SK.constraint.Add(&(sv.c));
ZERO(&(sv.c));
} else if(strcmp(line, "AddStyle")==0) {
SK.style.Add(&(sv.s));
ZERO(&(sv.s));
} else if(strcmp(line, VERSION_STRING)==0) {
// do nothing, version string
} else if(StrStartsWith(line, "Triangle ") ||
StrStartsWith(line, "Surface ") ||
StrStartsWith(line, "SCtrl ") ||
StrStartsWith(line, "TrimBy ") ||
StrStartsWith(line, "Curve ") ||
StrStartsWith(line, "CCtrl ") ||
StrStartsWith(line, "CurvePt ") ||
strcmp(line, "AddSurface")==0 ||
strcmp(line, "AddCurve")==0)
{
// ignore the mesh or shell, since we regenerate that
} else {
fileLoadError = true;
}
}
fclose(fh);
if(fileLoadError) {
Error("Unrecognized data in file. This file may be corrupt, or "
"from a new version of the program.");
// At least leave the program in a non-crashing state.
if(SK.group.n == 0) {
NewFile();
}
}
return true;
}
bool SolveSpace::LoadEntitiesFromFile(const char *file, EntityList *le,
SMesh *m, SShell *sh)
{
SSurface srf;
ZERO(&srf);
SCurve crv;
ZERO(&crv);
fh = fopen(file, "rb");
if(!fh) return false;
le->Clear();
memset(&sv, 0, sizeof(sv));
char line[1024];
while(fgets(line, (int)sizeof(line), fh)) {
char *s = strchr(line, '\n');
if(s) *s = '\0';
// We should never get files with \r characters in them, but mailers
// will sometimes mangle attachments.
s = strchr(line, '\r');
if(s) *s = '\0';
if(*line == '\0') continue;
2015-03-29 00:30:52 +00:00
char *e = strchr(line, '=');
if(e) {
*e = '\0';
char *key = line, *val = e+1;
LoadUsingTable(key, val);
} else if(strcmp(line, "AddGroup")==0) {
// Don't leak memory; these get allocated whether we want them
// or not.
sv.g.remap.Clear();
} else if(strcmp(line, "AddParam")==0) {
} else if(strcmp(line, "AddEntity")==0) {
le->Add(&(sv.e));
memset(&(sv.e), 0, sizeof(sv.e));
} else if(strcmp(line, "AddRequest")==0) {
} else if(strcmp(line, "AddConstraint")==0) {
} else if(strcmp(line, "AddStyle")==0) {
} else if(strcmp(line, VERSION_STRING)==0) {
} else if(StrStartsWith(line, "Triangle ")) {
STriangle tr; ZERO(&tr);
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
unsigned int rgb = 0;
if(sscanf(line, "Triangle %x %x "
"%lf %lf %lf %lf %lf %lf %lf %lf %lf",
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
&(tr.meta.face), &rgb,
2015-03-29 00:30:52 +00:00
&(tr.a.x), &(tr.a.y), &(tr.a.z),
&(tr.b.x), &(tr.b.y), &(tr.b.z),
&(tr.c.x), &(tr.c.y), &(tr.c.z)) != 11)
{
oops();
}
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
tr.meta.color = RgbColor::FromPackedInt((uint32_t)rgb);
m->AddTriangle(&tr);
} else if(StrStartsWith(line, "Surface ")) {
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
unsigned int rgb = 0;
if(sscanf(line, "Surface %x %x %x %d %d",
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
&(srf.h.v), &rgb, &(srf.face),
&(srf.degm), &(srf.degn)) != 5)
{
oops();
}
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
srf.color = RgbColor::FromPackedInt((uint32_t)rgb);
} else if(StrStartsWith(line, "SCtrl ")) {
int i, j;
Vector c;
double w;
if(sscanf(line, "SCtrl %d %d %lf %lf %lf Weight %lf",
&i, &j, &(c.x), &(c.y), &(c.z), &w) != 6)
{
oops();
}
srf.ctrl[i][j] = c;
srf.weight[i][j] = w;
} else if(StrStartsWith(line, "TrimBy ")) {
STrimBy stb;
ZERO(&stb);
int backwards;
if(sscanf(line, "TrimBy %x %d %lf %lf %lf %lf %lf %lf",
&(stb.curve.v), &backwards,
&(stb.start.x), &(stb.start.y), &(stb.start.z),
&(stb.finish.x), &(stb.finish.y), &(stb.finish.z)) != 8)
{
oops();
}
stb.backwards = (backwards != 0);
srf.trim.Add(&stb);
} else if(strcmp(line, "AddSurface")==0) {
sh->surface.Add(&srf);
ZERO(&srf);
} else if(StrStartsWith(line, "Curve ")) {
int isExact;
if(sscanf(line, "Curve %x %d %d %x %x",
&(crv.h.v),
&(isExact),
&(crv.exact.deg),
&(crv.surfA.v), &(crv.surfB.v)) != 5)
{
oops();
}
crv.isExact = (isExact != 0);
} else if(StrStartsWith(line, "CCtrl ")) {
int i;
Vector c;
double w;
if(sscanf(line, "CCtrl %d %lf %lf %lf Weight %lf",
&i, &(c.x), &(c.y), &(c.z), &w) != 5)
{
oops();
}
crv.exact.ctrl[i] = c;
crv.exact.weight[i] = w;
} else if(StrStartsWith(line, "CurvePt ")) {
SCurvePt scpt;
int vertex;
if(sscanf(line, "CurvePt %d %lf %lf %lf",
&vertex,
&(scpt.p.x), &(scpt.p.y), &(scpt.p.z)) != 4)
{
oops();
}
scpt.vertex = (vertex != 0);
crv.pts.Add(&scpt);
} else if(strcmp(line, "AddCurve")==0) {
sh->curve.Add(&crv);
ZERO(&crv);
} else {
oops();
}
}
fclose(fh);
return true;
}
void SolveSpace::ReloadAllImported(void) {
allConsistent = false;
int i;
for(i = 0; i < SK.group.n; i++) {
Group *g = &(SK.group.elem[i]);
if(g->type != Group::IMPORTED) continue;
g->impEntity.Clear();
g->impMesh.Clear();
g->impShell.Clear();
FILE *test = fopen(g->impFile, "rb");
if(test) {
fclose(test); // okay, exists
} else {
// It doesn't exist. Perhaps the entire tree has moved, and we
// can use the relative filename to get us back.
if(SS.saveFile[0]) {
char fromRel[MAX_PATH];
strcpy(fromRel, g->impFileRel);
MakePathAbsolute(SS.saveFile, fromRel);
test = fopen(fromRel, "rb");
if(test) {
fclose(test);
// It worked, this is our new absolute path
strcpy(g->impFile, fromRel);
}
}
}
if(LoadEntitiesFromFile(g->impFile,
&(g->impEntity), &(g->impMesh), &(g->impShell)))
{
if(SS.saveFile[0]) {
// Record the imported file's name relative to our filename;
// if the entire tree moves, then everything will still work
strcpy(g->impFileRel, g->impFile);
MakePathRelative(SS.saveFile, g->impFileRel);
} else {
// We're not yet saved, so can't make it absolute
strcpy(g->impFileRel, g->impFile);
}
} else {
Error("Failed to load imported file '%s'", g->impFile);
}
}
}