2008-03-27 09:53:51 +00:00
|
|
|
#include "solvespace.h"
|
|
|
|
|
|
|
|
void MakeMatrix(double *mat, double a11, double a12, double a13, double a14,
|
|
|
|
double a21, double a22, double a23, double a24,
|
|
|
|
double a31, double a32, double a33, double a34,
|
|
|
|
double a41, double a42, double a43, double a44)
|
|
|
|
{
|
|
|
|
mat[ 0] = a11;
|
|
|
|
mat[ 1] = a21;
|
|
|
|
mat[ 2] = a31;
|
|
|
|
mat[ 3] = a41;
|
|
|
|
mat[ 4] = a12;
|
|
|
|
mat[ 5] = a22;
|
|
|
|
mat[ 6] = a32;
|
|
|
|
mat[ 7] = a42;
|
|
|
|
mat[ 8] = a13;
|
|
|
|
mat[ 9] = a23;
|
|
|
|
mat[10] = a33;
|
|
|
|
mat[11] = a43;
|
|
|
|
mat[12] = a14;
|
|
|
|
mat[13] = a24;
|
|
|
|
mat[14] = a34;
|
|
|
|
mat[15] = a44;
|
|
|
|
}
|
|
|
|
|
2008-04-09 08:39:01 +00:00
|
|
|
Vector Vector::MakeFrom(double x, double y, double z) {
|
|
|
|
Vector v;
|
|
|
|
v.x = x; v.y = y; v.z = z;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::RotationU(double a, double b, double c, double d) {
|
|
|
|
Vector v;
|
|
|
|
v.x = a*a + b*b - c*c - d*d;
|
|
|
|
v.y = 2*b*c - 2*a*d;
|
|
|
|
v.z = 2*a*c + 2*b*d;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::RotationV(double a, double b, double c, double d) {
|
|
|
|
Vector v;
|
|
|
|
v.x = 2*a*d + 2*b*c;
|
|
|
|
v.y = a*a - b*b + c*c - d*d;
|
|
|
|
v.z = 2*c*d - 2*a*b;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2008-04-01 10:48:44 +00:00
|
|
|
Vector Vector::Plus(Vector b) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x + b.x;
|
|
|
|
r.y = y + b.y;
|
|
|
|
r.z = z + b.z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::Minus(Vector b) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x - b.x;
|
|
|
|
r.y = y - b.y;
|
|
|
|
r.z = z - b.z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::Negated(void) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = -x;
|
|
|
|
r.y = -y;
|
|
|
|
r.z = -z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
2008-03-27 09:53:51 +00:00
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::Cross(Vector b) {
|
2008-03-27 09:53:51 +00:00
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = -(z*b.y) + (y*b.z);
|
|
|
|
r.y = (z*b.x) - (x*b.z);
|
|
|
|
r.z = -(y*b.x) + (x*b.y);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
double Vector::Dot(Vector b) {
|
2008-03-27 09:53:51 +00:00
|
|
|
return (x*b.x + y*b.y + z*b.z);
|
|
|
|
}
|
|
|
|
|
2008-04-01 10:48:44 +00:00
|
|
|
Vector Vector::Normal(int which) {
|
|
|
|
Vector n;
|
|
|
|
|
|
|
|
// Arbitrarily choose one vector that's normal to us, pivoting
|
|
|
|
// appropriately.
|
|
|
|
double xa = fabs(x), ya = fabs(y), za = fabs(z);
|
|
|
|
double minc = min(min(xa, ya), za);
|
|
|
|
if(minc == xa) {
|
|
|
|
n.x = 0;
|
|
|
|
n.y = z;
|
|
|
|
n.z = -y;
|
|
|
|
} else if(minc == ya) {
|
|
|
|
n.y = 0;
|
|
|
|
n.z = x;
|
|
|
|
n.x = -z;
|
|
|
|
} else if(minc == za) {
|
|
|
|
n.z = 0;
|
|
|
|
n.x = y;
|
|
|
|
n.y = -x;
|
|
|
|
} else {
|
|
|
|
oops();
|
|
|
|
}
|
|
|
|
|
|
|
|
if(which == 0) {
|
|
|
|
// That's the vector we return.
|
|
|
|
} else if(which == 1) {
|
|
|
|
n = this->Cross(n);
|
|
|
|
} else {
|
|
|
|
oops();
|
|
|
|
}
|
|
|
|
|
|
|
|
n = n.ScaledBy(1/n.Magnitude());
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::RotatedAbout(Vector axis, double theta) {
|
2008-03-27 09:53:51 +00:00
|
|
|
double c = cos(theta);
|
|
|
|
double s = sin(theta);
|
|
|
|
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
|
|
|
|
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
|
|
|
|
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
|
|
|
|
|
|
|
|
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
|
|
|
|
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
|
|
|
|
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
|
|
|
|
|
|
|
|
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
|
|
|
|
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
|
|
|
|
(z)*(c + (1 - c)*(axis.z)*(axis.z));
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
double Vector::Magnitude(void) {
|
2008-03-27 09:53:51 +00:00
|
|
|
return sqrt(x*x + y*y + z*z);
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::ScaledBy(double v) {
|
2008-03-27 09:53:51 +00:00
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x * v;
|
|
|
|
r.y = y * v;
|
|
|
|
r.z = z * v;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
2008-04-01 10:48:44 +00:00
|
|
|
|
2008-04-12 14:12:26 +00:00
|
|
|
Point2d Point2d::Plus(Point2d b) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x + b.x;
|
|
|
|
r.y = y + b.y;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d Point2d::Minus(Point2d b) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x - b.x;
|
|
|
|
r.y = y - b.y;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d Point2d::ScaledBy(double s) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x*s;
|
|
|
|
r.y = y*s;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Point2d::DistanceTo(Point2d p) {
|
|
|
|
double dx = x - p.x;
|
|
|
|
double dy = y - p.y;
|
|
|
|
return sqrt(dx*dx + dy*dy);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Point2d::DistanceToLine(Point2d p0, Point2d dp, bool segment) {
|
|
|
|
double m = dp.x*dp.x + dp.y*dp.y;
|
|
|
|
if(m < 0.05) return 1e12;
|
|
|
|
|
|
|
|
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
|
|
|
|
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
|
|
|
|
|
|
|
|
if((t < 0 || t > 1) && segment) {
|
|
|
|
// The closest point is one of the endpoints; determine which.
|
|
|
|
double d0 = DistanceTo(p0);
|
|
|
|
double d1 = DistanceTo(p0.Plus(dp));
|
|
|
|
|
|
|
|
return min(d1, d0);
|
|
|
|
} else {
|
|
|
|
Point2d closest = p0.Plus(dp.ScaledBy(t));
|
|
|
|
return DistanceTo(closest);
|
|
|
|
}
|
|
|
|
}
|
2008-04-11 11:13:47 +00:00
|
|
|
|