solvespace/src/textscreens.cpp

792 lines
28 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// The text-based browser window, used to view the structure of the model by
// groups and for other similar purposes.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
//-----------------------------------------------------------------------------
// A navigation bar that always appears at the top of the window, with a
// link to bring us back home.
//-----------------------------------------------------------------------------
void TextWindow::ScreenHome(int link, uint32_t v) {
SS.TW.GoToScreen(SCREEN_LIST_OF_GROUPS);
}
void TextWindow::ShowHeader(bool withNav) {
ClearScreen();
const char *header;
std::string desc;
if(SS.GW.LockedInWorkplane()) {
header = "in plane: ";
desc = SK.GetEntity(SS.GW.ActiveWorkplane())->DescriptionString();
} else {
header = "drawing / constraining in 3d";
desc = "";
}
// Navigation buttons
if(withNav) {
Printf(false, " %Fl%Lh%fhome%E %Ft%s%E%s",
(&TextWindow::ScreenHome), header, desc.c_str());
} else {
Printf(false, " %Ft%s%E%s", header, desc.c_str());
}
// Leave space for the icons that are painted here.
Printf(false, "");
Printf(false, "");
}
//-----------------------------------------------------------------------------
// The screen that shows a list of every group in the sketch, with options
// to hide or show them, and to view them in detail. This is our home page.
//-----------------------------------------------------------------------------
void TextWindow::ScreenSelectGroup(int link, uint32_t v) {
SS.TW.GoToScreen(SCREEN_GROUP_INFO);
SS.TW.shown.group.v = v;
}
void TextWindow::ScreenToggleGroupShown(int link, uint32_t v) {
hGroup hg = { v };
Group *g = SK.GetGroup(hg);
g->visible = !(g->visible);
// If a group was just shown, then it might not have been generated
// previously, so regenerate.
SS.GenerateAll();
}
void TextWindow::ScreenShowGroupsSpecial(int link, uint32_t v) {
bool state = link == 's';
for(int i = 0; i < SK.groupOrder.n; i++) {
Group *g = SK.GetGroup(SK.groupOrder.elem[i]);
g->visible = state;
}
}
void TextWindow::ScreenActivateGroup(int link, uint32_t v) {
hGroup hg = { v };
SS.GW.activeGroup.v = v;
SK.GetGroup(SS.GW.activeGroup)->Activate();
SS.GW.ClearSuper();
}
void TextWindow::ReportHowGroupSolved(hGroup hg) {
SS.GW.ClearSuper();
SS.TW.GoToScreen(SCREEN_GROUP_SOLVE_INFO);
SS.TW.shown.group.v = hg.v;
SS.ScheduleShowTW();
}
void TextWindow::ScreenHowGroupSolved(int link, uint32_t v) {
if(SS.GW.activeGroup.v != v) {
ScreenActivateGroup(link, v);
}
SS.TW.GoToScreen(SCREEN_GROUP_SOLVE_INFO);
SS.TW.shown.group.v = v;
}
void TextWindow::ScreenShowConfiguration(int link, uint32_t v) {
SS.TW.GoToScreen(SCREEN_CONFIGURATION);
}
void TextWindow::ScreenShowEditView(int link, uint32_t v) {
SS.TW.GoToScreen(SCREEN_EDIT_VIEW);
}
void TextWindow::ScreenGoToWebsite(int link, uint32_t v) {
OpenWebsite("http://solvespace.com/txtlink");
}
void TextWindow::ShowListOfGroups(void) {
const char *radioTrue = " " RADIO_TRUE " ",
*radioFalse = " " RADIO_FALSE " ",
*checkTrue = " " CHECK_TRUE " ",
*checkFalse = " " CHECK_FALSE " ";
Printf(true, "%Ft active");
Printf(false, "%Ft shown ok group-name%E");
int i;
bool afterActive = false;
for(i = 0; i < SK.groupOrder.n; i++) {
Group *g = SK.GetGroup(SK.groupOrder.elem[i]);
std::string s = g->DescriptionString();
bool active = (g->h.v == SS.GW.activeGroup.v);
bool shown = g->visible;
bool ok = g->IsSolvedOkay();
bool ref = (g->h.v == Group::HGROUP_REFERENCES.v);
Printf(false, "%Bp%Fd "
"%Ft%s%Fb%D%f%Ll%s%E "
"%Fb%s%D%f%Ll%s%E "
"%Fp%D%f%s%Ll%s%E "
"%Fl%Ll%D%f%s",
// Alternate between light and dark backgrounds, for readability
(i & 1) ? 'd' : 'a',
// Link that activates the group
ref ? " " : "",
g->h.v, (&TextWindow::ScreenActivateGroup),
ref ? "" : (active ? radioTrue : radioFalse),
// Link that hides or shows the group
afterActive ? " - " : "",
g->h.v, (&TextWindow::ScreenToggleGroupShown),
afterActive ? "" : (shown ? checkTrue : checkFalse),
// Link to the errors, if a problem occured while solving
ok ? 's' : 'x', g->h.v, (&TextWindow::ScreenHowGroupSolved),
ok ? "ok" : "",
ok ? "" : "NO",
// Link to a screen that gives more details on the group
g->h.v, (&TextWindow::ScreenSelectGroup), s.c_str());
if(active) afterActive = true;
}
Printf(true, " %Fl%Ls%fshow all%E / %Fl%Lh%fhide all%E",
&(TextWindow::ScreenShowGroupsSpecial),
&(TextWindow::ScreenShowGroupsSpecial));
Printf(true, " %Fl%Ls%fline styles%E /"
" %Fl%Ls%fview%E /"
" %Fl%Ls%fconfiguration%E",
&(TextWindow::ScreenShowListOfStyles),
&(TextWindow::ScreenShowEditView),
&(TextWindow::ScreenShowConfiguration));
}
//-----------------------------------------------------------------------------
// The screen that shows information about a specific group, and allows the
// user to edit various things about it.
//-----------------------------------------------------------------------------
void TextWindow::ScreenHoverConstraint(int link, uint32_t v) {
if(!SS.GW.showConstraints) return;
hConstraint hc = { v };
Constraint *c = SK.GetConstraint(hc);
if(c->group.v != SS.GW.activeGroup.v) {
// Only constraints in the active group are visible
return;
}
SS.GW.hover.Clear();
SS.GW.hover.constraint = hc;
SS.GW.hover.emphasized = true;
}
void TextWindow::ScreenHoverRequest(int link, uint32_t v) {
SS.GW.hover.Clear();
hRequest hr = { v };
SS.GW.hover.entity = hr.entity(0);
SS.GW.hover.emphasized = true;
}
void TextWindow::ScreenSelectConstraint(int link, uint32_t v) {
SS.GW.ClearSelection();
GraphicsWindow::Selection sel = {};
sel.constraint.v = v;
SS.GW.selection.Add(&sel);
}
void TextWindow::ScreenSelectRequest(int link, uint32_t v) {
SS.GW.ClearSelection();
GraphicsWindow::Selection sel = {};
hRequest hr = { v };
sel.entity = hr.entity(0);
SS.GW.selection.Add(&sel);
}
void TextWindow::ScreenChangeGroupOption(int link, uint32_t v) {
SS.UndoRemember();
Group *g = SK.GetGroup(SS.TW.shown.group);
switch(link) {
case 's': g->subtype = Group::ONE_SIDED; break;
case 'S': g->subtype = Group::TWO_SIDED; break;
case 'k': g->skipFirst = true; break;
case 'K': g->skipFirst = false; break;
case 'c': g->meshCombine = v; break;
case 'P': g->suppress = !(g->suppress); break;
case 'r': g->relaxConstraints = !(g->relaxConstraints); break;
case 'e': g->allowRedundant = !(g->allowRedundant); break;
case 'v': g->visible = !(g->visible); break;
case 'd': g->allDimsReference = !(g->allDimsReference); break;
case 'f': g->forceToMesh = !(g->forceToMesh); break;
}
SS.MarkGroupDirty(g->h);
SS.GenerateAll();
SS.GW.ClearSuper();
}
void TextWindow::ScreenColor(int link, uint32_t v) {
SS.UndoRemember();
Group *g = SK.GetGroup(SS.TW.shown.group);
SS.TW.ShowEditControlWithColorPicker(3, g->color);
SS.TW.edit.meaning = EDIT_GROUP_COLOR;
}
void TextWindow::ScreenOpacity(int link, uint32_t v) {
Group *g = SK.GetGroup(SS.TW.shown.group);
SS.TW.ShowEditControl(11, ssprintf("%.2f", g->color.alphaF()));
SS.TW.edit.meaning = EDIT_GROUP_OPACITY;
SS.TW.edit.group.v = g->h.v;
}
void TextWindow::ScreenChangeExprA(int link, uint32_t v) {
Group *g = SK.GetGroup(SS.TW.shown.group);
SS.TW.ShowEditControl(10, ssprintf("%d", (int)g->valA));
SS.TW.edit.meaning = EDIT_TIMES_REPEATED;
SS.TW.edit.group.v = v;
}
void TextWindow::ScreenChangeGroupName(int link, uint32_t v) {
Group *g = SK.GetGroup(SS.TW.shown.group);
SS.TW.ShowEditControl(12, g->DescriptionString().substr(5));
SS.TW.edit.meaning = EDIT_GROUP_NAME;
SS.TW.edit.group.v = v;
}
void TextWindow::ScreenChangeGroupScale(int link, uint32_t v) {
Group *g = SK.GetGroup(SS.TW.shown.group);
SS.TW.ShowEditControl(13, ssprintf("%.3f", g->scale));
SS.TW.edit.meaning = EDIT_GROUP_SCALE;
SS.TW.edit.group.v = v;
}
void TextWindow::ScreenDeleteGroup(int link, uint32_t v) {
SS.UndoRemember();
hGroup hg = SS.TW.shown.group;
if(hg.v == SS.GW.activeGroup.v) {
Error("This group is currently active; activate a different group "
"before proceeding.");
return;
}
SK.group.RemoveById(hg);
// This is a major change, so let's re-solve everything.
SS.TW.ClearSuper();
SS.GW.ClearSuper();
SS.GenerateAll(SolveSpaceUI::GENERATE_ALL);
}
void TextWindow::ShowGroupInfo(void) {
Group *g = SK.GetGroup(shown.group);
const char *s = "???";
if(shown.group.v == Group::HGROUP_REFERENCES.v) {
Printf(true, "%FtGROUP %E%s", g->DescriptionString().c_str());
goto list_items;
} else {
Printf(true, "%FtGROUP %E%s [%Fl%Ll%D%frename%E/%Fl%Ll%D%fdel%E]",
g->DescriptionString().c_str(),
g->h.v, &TextWindow::ScreenChangeGroupName,
g->h.v, &TextWindow::ScreenDeleteGroup);
}
if(g->type == Group::LATHE) {
Printf(true, " %Ftlathe plane sketch");
} else if(g->type == Group::EXTRUDE || g->type == Group::ROTATE ||
g->type == Group::TRANSLATE)
{
if(g->type == Group::EXTRUDE) {
s = "extrude plane sketch";
} else if(g->type == Group::TRANSLATE) {
s = "translate original sketch";
} else if(g->type == Group::ROTATE) {
s = "rotate original sketch";
}
Printf(true, " %Ft%s%E", s);
bool one = (g->subtype == Group::ONE_SIDED);
Printf(false,
"%Ba %f%Ls%Fd%s one-sided%E "
"%f%LS%Fd%s two-sided%E",
&TextWindow::ScreenChangeGroupOption,
one ? RADIO_TRUE : RADIO_FALSE,
&TextWindow::ScreenChangeGroupOption,
!one ? RADIO_TRUE : RADIO_FALSE);
if(g->type == Group::ROTATE || g->type == Group::TRANSLATE) {
if(g->subtype == Group::ONE_SIDED) {
bool skip = g->skipFirst;
2015-03-29 00:30:52 +00:00
Printf(false,
"%Bd %Ftstart %f%LK%Fd%s with original%E "
"%f%Lk%Fd%s with copy #1%E",
&ScreenChangeGroupOption,
!skip ? RADIO_TRUE : RADIO_FALSE,
&ScreenChangeGroupOption,
skip ? RADIO_TRUE : RADIO_FALSE);
}
int times = (int)(g->valA);
Printf(false, "%Bp %Ftrepeat%E %d time%s %Fl%Ll%D%f[change]%E",
(g->subtype == Group::ONE_SIDED) ? 'a' : 'd',
times, times == 1 ? "" : "s",
g->h.v, &TextWindow::ScreenChangeExprA);
}
} else if(g->type == Group::IMPORTED) {
Printf(true, " %Ftimport geometry from file%E");
Printf(false, "%Ba '%s'", g->impFileRel.c_str());
Printf(false, "%Bd %Ftscaled by%E %# %Fl%Ll%f%D[change]%E",
g->scale,
&TextWindow::ScreenChangeGroupScale, g->h.v);
} else if(g->type == Group::DRAWING_3D) {
Printf(true, " %Ftsketch in 3d%E");
} else if(g->type == Group::DRAWING_WORKPLANE) {
Printf(true, " %Ftsketch in new workplane%E");
} else {
Printf(true, "???");
}
Printf(false, "");
if(g->type == Group::EXTRUDE ||
g->type == Group::LATHE ||
g->type == Group::IMPORTED)
{
bool un = (g->meshCombine == Group::COMBINE_AS_UNION);
bool diff = (g->meshCombine == Group::COMBINE_AS_DIFFERENCE);
bool asy = (g->meshCombine == Group::COMBINE_AS_ASSEMBLE);
bool asa = (g->type == Group::IMPORTED);
Printf(false, " %Ftsolid model as");
Printf(false, "%Ba %f%D%Lc%Fd%s union%E "
"%f%D%Lc%Fd%s difference%E "
"%f%D%Lc%Fd%s%s%E ",
&TextWindow::ScreenChangeGroupOption,
Group::COMBINE_AS_UNION,
un ? RADIO_TRUE : RADIO_FALSE,
&TextWindow::ScreenChangeGroupOption,
Group::COMBINE_AS_DIFFERENCE,
diff ? RADIO_TRUE : RADIO_FALSE,
&TextWindow::ScreenChangeGroupOption,
Group::COMBINE_AS_ASSEMBLE,
asa ? (asy ? RADIO_TRUE : RADIO_FALSE) : " ",
asa ? " assemble" : "");
if(g->type == Group::EXTRUDE ||
g->type == Group::LATHE)
{
Printf(false,
"%Bd %Ftcolor %E%Bz %Bd (%@, %@, %@) %f%D%Lf%Fl[change]%E",
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
&g->color,
g->color.redF(), g->color.greenF(), g->color.blueF(),
ScreenColor, top[rows-1] + 2);
Printf(false, "%Bd %Ftopacity%E %@ %f%Lf%Fl[change]%E",
g->color.alphaF(),
&TextWindow::ScreenOpacity);
} else if(g->type == Group::IMPORTED) {
Printf(false, " %Fd%f%LP%s suppress this group's solid model",
&TextWindow::ScreenChangeGroupOption,
g->suppress ? CHECK_TRUE : CHECK_FALSE);
}
Printf(false, "");
}
Printf(false, " %f%Lv%Fd%s show entities from this group",
&TextWindow::ScreenChangeGroupOption,
g->visible ? CHECK_TRUE : CHECK_FALSE);
Group *pg; pg = g->PreviousGroup();
if(pg && pg->runningMesh.IsEmpty() && g->thisMesh.IsEmpty()) {
Printf(false, " %f%Lf%Fd%s force NURBS surfaces to triangle mesh",
&TextWindow::ScreenChangeGroupOption,
g->forceToMesh ? CHECK_TRUE : CHECK_FALSE);
} else {
Printf(false, " (model already forced to triangle mesh)");
}
Printf(true, " %f%Lr%Fd%s relax constraints and dimensions",
&TextWindow::ScreenChangeGroupOption,
g->relaxConstraints ? CHECK_TRUE : CHECK_FALSE);
Printf(false, " %f%Le%Fd%s allow redundant constraints",
&TextWindow::ScreenChangeGroupOption,
g->allowRedundant ? CHECK_TRUE : CHECK_FALSE);
Printf(false, " %f%Ld%Fd%s treat all dimensions as reference",
&TextWindow::ScreenChangeGroupOption,
g->allDimsReference ? CHECK_TRUE : CHECK_FALSE);
if(g->booleanFailed) {
Printf(false, "");
Printf(false, "The Boolean operation failed. It may be ");
Printf(false, "possible to fix the problem by choosing ");
Printf(false, "'force NURBS surfaces to triangle mesh'.");
}
list_items:
Printf(false, "");
Printf(false, "%Ft requests in group");
int i, a = 0;
for(i = 0; i < SK.request.n; i++) {
Request *r = &(SK.request.elem[i]);
if(r->group.v == shown.group.v) {
std::string s = r->DescriptionString();
Printf(false, "%Bp %Fl%Ll%D%f%h%s%E",
(a & 1) ? 'd' : 'a',
r->h.v, (&TextWindow::ScreenSelectRequest),
&(TextWindow::ScreenHoverRequest), s.c_str());
a++;
}
}
if(a == 0) Printf(false, "%Ba (none)");
a = 0;
Printf(false, "");
Printf(false, "%Ft constraints in group (%d DOF)", g->solved.dof);
for(i = 0; i < SK.constraint.n; i++) {
Constraint *c = &(SK.constraint.elem[i]);
if(c->group.v == shown.group.v) {
std::string s = c->DescriptionString();
Printf(false, "%Bp %Fl%Ll%D%f%h%s%E %s",
(a & 1) ? 'd' : 'a',
c->h.v, (&TextWindow::ScreenSelectConstraint),
(&TextWindow::ScreenHoverConstraint), s.c_str(),
c->reference ? "(ref)" : "");
a++;
}
}
if(a == 0) Printf(false, "%Ba (none)");
}
//-----------------------------------------------------------------------------
// The screen that's displayed when the sketch fails to solve. A report of
// what failed, and (if the problem is a singular Jacobian) a list of
// constraints that could be removed to fix it.
//-----------------------------------------------------------------------------
void TextWindow::ScreenAllowRedundant(int link, uint32_t v) {
SS.UndoRemember();
Group *g = SK.GetGroup(SS.TW.shown.group);
g->allowRedundant = true;
SS.TW.shown.screen = SCREEN_GROUP_INFO;
SS.TW.Show();
}
void TextWindow::ShowGroupSolveInfo(void) {
Group *g = SK.GetGroup(shown.group);
if(g->IsSolvedOkay()) {
// Go back to the default group info screen
shown.screen = SCREEN_GROUP_INFO;
Show();
return;
}
Printf(true, "%FtGROUP %E%s", g->DescriptionString().c_str());
switch(g->solved.how) {
case System::DIDNT_CONVERGE:
Distinguish overconstrained and redundantly constrained sketches. When a solver error arises after a change to the sketch, it should be easy to understand exactly why it happened. Before this change, two functionally distinct modes of failure were lumped into one: the same "redundant constraints" message was displayed when all degrees of freedom were exhausted and the had a solution, but also when it had not. To understand why this is problematic, let's examine several ways in which we can end up with linearly dependent equations in our system: 0) create a triangle, then constrain two different pairs of edges to be perpendicular 1) add two distinct distance constraints on the same segment 2) add two identical distance constraints on the same segment 3) create a triangle, then constrain edges to lengths a, b, and c so that a+b=c The case (0) is our baseline case: the constraints in it make the system unsolvable yet they do not remove more degrees of freedom than the amount we started with. So the displayed error is "unsolvable constraints". The constraints in case (1) remove one too many degrees of freedom, but otherwise are quite like the case (0): the cause of failure that is useful to the user is that the constraints are mutually incompatible. The constraints in cases (2) and (3) however are not like the others: there is a set of parameters that satisfies all of the constraints, but the constraints still remove one degree of freedom too many. It makes sense to display a different error message for cases (2) and (3) because in practice, cases like this are likely to arise from adjustment of constraint values on sketches corresponding to systems that have a small amount of degenerate solutions, and this is very different from systems arising in cases like (0) where no adjustment of constraint values will ever result in a successful solution. So the error message displayed is "redundant constraints". At last, this commit makes cases (0) and (1) display a message with only a minor difference in wording. This is deliberate. The reason is that the facts "the system is unsolvable" and "the system is unsolvable and also has linearly dependent equations" present no meaningful, actionable difference to the user, and placing emphasis on it would only cause confusion. However, they are still distinguished, because in case (0) we list all relevant constraints (and thus we say they are "mutually incompatible") but in case (1) we only list the ones that constrain the sketch further than some valid solution (and we say they are "unsatisfied").
2016-01-21 09:28:05 +00:00
Printf(true, "%FxSOLVE FAILED!%Fd unsolvable constraints");
Printf(true, "the following constraints are incompatible");
break;
case System::REDUNDANT_DIDNT_CONVERGE:
Printf(true, "%FxSOLVE FAILED!%Fd unsolvable constraints");
Printf(true, "the following constraints are unsatisfied");
break;
Distinguish overconstrained and redundantly constrained sketches. When a solver error arises after a change to the sketch, it should be easy to understand exactly why it happened. Before this change, two functionally distinct modes of failure were lumped into one: the same "redundant constraints" message was displayed when all degrees of freedom were exhausted and the had a solution, but also when it had not. To understand why this is problematic, let's examine several ways in which we can end up with linearly dependent equations in our system: 0) create a triangle, then constrain two different pairs of edges to be perpendicular 1) add two distinct distance constraints on the same segment 2) add two identical distance constraints on the same segment 3) create a triangle, then constrain edges to lengths a, b, and c so that a+b=c The case (0) is our baseline case: the constraints in it make the system unsolvable yet they do not remove more degrees of freedom than the amount we started with. So the displayed error is "unsolvable constraints". The constraints in case (1) remove one too many degrees of freedom, but otherwise are quite like the case (0): the cause of failure that is useful to the user is that the constraints are mutually incompatible. The constraints in cases (2) and (3) however are not like the others: there is a set of parameters that satisfies all of the constraints, but the constraints still remove one degree of freedom too many. It makes sense to display a different error message for cases (2) and (3) because in practice, cases like this are likely to arise from adjustment of constraint values on sketches corresponding to systems that have a small amount of degenerate solutions, and this is very different from systems arising in cases like (0) where no adjustment of constraint values will ever result in a successful solution. So the error message displayed is "redundant constraints". At last, this commit makes cases (0) and (1) display a message with only a minor difference in wording. This is deliberate. The reason is that the facts "the system is unsolvable" and "the system is unsolvable and also has linearly dependent equations" present no meaningful, actionable difference to the user, and placing emphasis on it would only cause confusion. However, they are still distinguished, because in case (0) we list all relevant constraints (and thus we say they are "mutually incompatible") but in case (1) we only list the ones that constrain the sketch further than some valid solution (and we say they are "unsatisfied").
2016-01-21 09:28:05 +00:00
case System::REDUNDANT_OKAY:
Printf(true, "%FxSOLVE FAILED!%Fd redundant constraints");
Printf(true, "remove any one of these to fix it");
break;
case System::TOO_MANY_UNKNOWNS:
Printf(true, "Too many unknowns in a single group!");
return;
}
for(int i = 0; i < g->solved.remove.n; i++) {
hConstraint hc = g->solved.remove.elem[i];
Constraint *c = SK.constraint.FindByIdNoOops(hc);
if(!c) continue;
Printf(false, "%Bp %Fl%Ll%D%f%h%s%E",
(i & 1) ? 'd' : 'a',
c->h.v, (&TextWindow::ScreenSelectConstraint),
(&TextWindow::ScreenHoverConstraint),
c->DescriptionString().c_str());
}
Printf(true, "It may be possible to fix the problem ");
Printf(false, "by selecting Edit -> Undo.");
if(g->solved.how == System::REDUNDANT_OKAY) {
Printf(true, "It is possible to suppress this error ");
Printf(false, "by %Fl%f%Llallowing redundant constraints%E in ",
&TextWindow::ScreenAllowRedundant);
Printf(false, "this group.");
}
}
//-----------------------------------------------------------------------------
// When we're stepping a dimension. User specifies the finish value, and
// how many steps to take in between current and finish, re-solving each
// time.
//-----------------------------------------------------------------------------
void TextWindow::ScreenStepDimFinish(int link, uint32_t v) {
SS.TW.edit.meaning = EDIT_STEP_DIM_FINISH;
std::string edit_value;
if(SS.TW.shown.dimIsDistance) {
edit_value = SS.MmToString(SS.TW.shown.dimFinish);
} else {
edit_value = ssprintf("%.3f", SS.TW.shown.dimFinish);
}
SS.TW.ShowEditControl(12, edit_value);
}
void TextWindow::ScreenStepDimSteps(int link, uint32_t v) {
SS.TW.edit.meaning = EDIT_STEP_DIM_STEPS;
SS.TW.ShowEditControl(12, ssprintf("%d", SS.TW.shown.dimSteps));
}
void TextWindow::ScreenStepDimGo(int link, uint32_t v) {
hConstraint hc = SS.TW.shown.constraint;
Constraint *c = SK.constraint.FindByIdNoOops(hc);
if(c) {
SS.UndoRemember();
double start = c->valA, finish = SS.TW.shown.dimFinish;
int i, n = SS.TW.shown.dimSteps;
for(i = 1; i <= n; i++) {
c = SK.GetConstraint(hc);
c->valA = start + ((finish - start)*i)/n;
SS.MarkGroupDirty(c->group);
SS.GenerateAll();
if(!SS.ActiveGroupsOkay()) {
// Failed to solve, so quit
break;
}
PaintGraphics();
}
}
InvalidateGraphics();
SS.TW.GoToScreen(SCREEN_LIST_OF_GROUPS);
}
void TextWindow::ShowStepDimension(void) {
Constraint *c = SK.constraint.FindByIdNoOops(shown.constraint);
if(!c) {
shown.screen = SCREEN_LIST_OF_GROUPS;
Show();
return;
}
Printf(true, "%FtSTEP DIMENSION%E %s", c->DescriptionString().c_str());
if(shown.dimIsDistance) {
Printf(true, "%Ba %Ftstart%E %s", SS.MmToString(c->valA).c_str());
Printf(false, "%Bd %Ftfinish%E %s %Fl%Ll%f[change]%E",
SS.MmToString(shown.dimFinish).c_str(), &ScreenStepDimFinish);
} else {
Printf(true, "%Ba %Ftstart%E %@", c->valA);
Printf(false, "%Bd %Ftfinish%E %@ %Fl%Ll%f[change]%E",
shown.dimFinish, &ScreenStepDimFinish);
}
Printf(false, "%Ba %Ftsteps%E %d %Fl%Ll%f%D[change]%E",
shown.dimSteps, &ScreenStepDimSteps);
Printf(true, " %Fl%Ll%fstep dimension now%E", &ScreenStepDimGo);
Printf(true, "(or %Fl%Ll%fcancel operation%E)", &ScreenHome);
}
//-----------------------------------------------------------------------------
// When we're creating tangent arcs (as requests, not as some parametric
// thing). User gets to specify the radius, and whether the old untrimmed
// curves are kept or deleted.
//-----------------------------------------------------------------------------
void TextWindow::ScreenChangeTangentArc(int link, uint32_t v) {
switch(link) {
case 'r': {
SS.TW.edit.meaning = EDIT_TANGENT_ARC_RADIUS;
SS.TW.ShowEditControl(3, SS.MmToString(SS.tangentArcRadius));
break;
}
case 'a': SS.tangentArcManual = !SS.tangentArcManual; break;
case 'd': SS.tangentArcDeleteOld = !SS.tangentArcDeleteOld; break;
}
}
void TextWindow::ShowTangentArc(void) {
Printf(true, "%FtTANGENT ARC PARAMETERS%E");
Printf(true, "%Ft radius of created arc%E");
if(SS.tangentArcManual) {
Printf(false, "%Ba %s %Fl%Lr%f[change]%E",
SS.MmToString(SS.tangentArcRadius).c_str(),
&(TextWindow::ScreenChangeTangentArc));
} else {
Printf(false, "%Ba automatic");
}
Printf(false, "");
Printf(false, " %Fd%f%La%s choose radius automatically%E",
&ScreenChangeTangentArc,
!SS.tangentArcManual ? CHECK_TRUE : CHECK_FALSE);
Printf(false, " %Fd%f%Ld%s delete original entities afterward%E",
&ScreenChangeTangentArc,
SS.tangentArcDeleteOld ? CHECK_TRUE : CHECK_FALSE);
Printf(false, "");
Printf(false, "To create a tangent arc at a point,");
Printf(false, "select that point and then choose");
Printf(false, "Sketch -> Tangent Arc at Point.");
Printf(true, "(or %Fl%Ll%fback to home screen%E)", &ScreenHome);
}
//-----------------------------------------------------------------------------
// The edit control is visible, and the user just pressed enter.
//-----------------------------------------------------------------------------
void TextWindow::EditControlDone(const char *s) {
edit.showAgain = false;
switch(edit.meaning) {
case EDIT_TIMES_REPEATED: {
Expr *e = Expr::From(s, true);
if(e) {
SS.UndoRemember();
double ev = e->Eval();
if((int)ev < 1) {
Error("Can't repeat fewer than 1 time.");
break;
}
if((int)ev > 999) {
Error("Can't repeat more than 999 times.");
break;
}
Group *g = SK.GetGroup(edit.group);
g->valA = ev;
if(g->type == Group::ROTATE) {
int i, c = 0;
for(i = 0; i < SK.constraint.n; i++) {
if(SK.constraint.elem[i].group.v == g->h.v) c++;
}
// If the group does not contain any constraints, then
// set the numerical guess to space the copies uniformly
// over one rotation. Don't touch the guess if we're
// already constrained, because that would break
// convergence.
if(c == 0) {
double copies = (g->skipFirst) ? (ev + 1) : ev;
SK.GetParam(g->h.param(3))->val = PI/(2*copies);
}
}
SS.MarkGroupDirty(g->h);
SS.ScheduleGenerateAll();
}
break;
}
case EDIT_GROUP_NAME: {
if(!*s) {
Error("Group name cannot be empty");
} else {
SS.UndoRemember();
Group *g = SK.GetGroup(edit.group);
g->name = s;
}
break;
}
case EDIT_GROUP_SCALE: {
Expr *e = Expr::From(s, true);
if(e) {
double ev = e->Eval();
if(fabs(ev) < 1e-6) {
Error("Scale cannot be zero.");
} else {
Group *g = SK.GetGroup(edit.group);
g->scale = ev;
SS.MarkGroupDirty(g->h);
SS.ScheduleGenerateAll();
}
}
break;
}
case EDIT_GROUP_COLOR: {
Vector rgb;
if(sscanf(s, "%lf, %lf, %lf", &rgb.x, &rgb.y, &rgb.z)==3) {
rgb = rgb.ClampWithin(0, 1);
Group *g = SK.group.FindByIdNoOops(SS.TW.shown.group);
if(!g) break;
g->color = RGBf(rgb.x, rgb.y, rgb.z);
SS.MarkGroupDirty(g->h);
SS.ScheduleGenerateAll();
SS.GW.ClearSuper();
} else {
Error("Bad format: specify color as r, g, b");
}
break;
}
case EDIT_GROUP_OPACITY: {
Expr *e = Expr::From(s, true);
if(e) {
double alpha = e->Eval();
if(alpha < 0 || alpha > 1) {
Error("Opacity must be between zero and one.");
} else {
Group *g = SK.GetGroup(edit.group);
g->color.alpha = (int)(255.1f * alpha);
SS.MarkGroupDirty(g->h);
SS.ScheduleGenerateAll();
SS.GW.ClearSuper();
}
}
break;
}
case EDIT_TTF_TEXT: {
SS.UndoRemember();
Request *r = SK.request.FindByIdNoOops(edit.request);
if(r) {
r->str = s;
SS.MarkGroupDirty(r->group);
SS.ScheduleGenerateAll();
}
break;
}
case EDIT_STEP_DIM_FINISH: {
Expr *e = Expr::From(s, true);
if(!e) {
break;
}
if(shown.dimIsDistance) {
shown.dimFinish = SS.ExprToMm(e);
} else {
shown.dimFinish = e->Eval();
}
break;
}
case EDIT_STEP_DIM_STEPS:
shown.dimSteps = min(300, max(1, atoi(s)));
break;
case EDIT_TANGENT_ARC_RADIUS: {
Expr *e = Expr::From(s, true);
if(!e) break;
if(e->Eval() < LENGTH_EPS) {
Error("Radius cannot be zero or negative.");
break;
}
SS.tangentArcRadius = SS.ExprToMm(e);
break;
}
default: {
int cnt = 0;
if(EditControlDoneForStyles(s)) cnt++;
if(EditControlDoneForConfiguration(s)) cnt++;
if(EditControlDoneForPaste(s)) cnt++;
if(EditControlDoneForView(s)) cnt++;
if(cnt > 1) {
// The identifiers were somehow assigned not uniquely?
oops();
}
break;
}
}
InvalidateGraphics();
SS.ScheduleShowTW();
if(!edit.showAgain) {
HideEditControl();
edit.meaning = EDIT_NOTHING;
}
}