solvespace/include/slvs.h

409 lines
13 KiB
C
Raw Normal View History

/*-----------------------------------------------------------------------------
* Data structures and prototypes for slvs.lib, a geometric constraint solver.
*
* See the comments in this file, the accompanying sample code that uses
* this library, and the accompanying documentation (DOC.txt).
*
* Copyright 2009-2013 Jonathan Westhues.
*---------------------------------------------------------------------------*/
#ifndef __SLVS_H
#define __SLVS_H
#ifdef WIN32
# ifdef EXPORT_DLL
# define DLL __declspec( dllexport )
# else
# define DLL __declspec( dllimport )
# endif
#else
# define DLL
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
#else
#include <stdint.h>
#endif
typedef uint32_t Slvs_hParam;
typedef uint32_t Slvs_hEntity;
typedef uint32_t Slvs_hConstraint;
typedef uint32_t Slvs_hGroup;
/* To obtain the 3d (not projected into a workplane) of a constraint or
* an entity, specify this instead of the workplane. */
#define SLVS_FREE_IN_3D 0
typedef struct {
Slvs_hParam h;
Slvs_hGroup group;
double val;
} Slvs_Param;
#define SLVS_E_POINT_IN_3D 50000
#define SLVS_E_POINT_IN_2D 50001
#define SLVS_E_NORMAL_IN_3D 60000
#define SLVS_E_NORMAL_IN_2D 60001
#define SLVS_E_DISTANCE 70000
/* The special point, normal, and distance types used for parametric step
* and repeat, extrude, and assembly are currently not exposed. Please
* contact us if you are interested in using these. */
#define SLVS_E_WORKPLANE 80000
#define SLVS_E_LINE_SEGMENT 80001
#define SLVS_E_CUBIC 80002
#define SLVS_E_CIRCLE 80003
#define SLVS_E_ARC_OF_CIRCLE 80004
typedef struct {
Slvs_hEntity h;
Slvs_hGroup group;
int type;
Slvs_hEntity wrkpl;
Slvs_hEntity point[4];
Slvs_hEntity normal;
Slvs_hEntity distance;
Slvs_hParam param[4];
} Slvs_Entity;
#define SLVS_C_POINTS_COINCIDENT 100000
#define SLVS_C_PT_PT_DISTANCE 100001
#define SLVS_C_PT_PLANE_DISTANCE 100002
#define SLVS_C_PT_LINE_DISTANCE 100003
#define SLVS_C_PT_FACE_DISTANCE 100004
#define SLVS_C_PT_IN_PLANE 100005
#define SLVS_C_PT_ON_LINE 100006
#define SLVS_C_PT_ON_FACE 100007
#define SLVS_C_EQUAL_LENGTH_LINES 100008
#define SLVS_C_LENGTH_RATIO 100009
#define SLVS_C_EQ_LEN_PT_LINE_D 100010
#define SLVS_C_EQ_PT_LN_DISTANCES 100011
#define SLVS_C_EQUAL_ANGLE 100012
#define SLVS_C_EQUAL_LINE_ARC_LEN 100013
#define SLVS_C_SYMMETRIC 100014
#define SLVS_C_SYMMETRIC_HORIZ 100015
#define SLVS_C_SYMMETRIC_VERT 100016
#define SLVS_C_SYMMETRIC_LINE 100017
#define SLVS_C_AT_MIDPOINT 100018
#define SLVS_C_HORIZONTAL 100019
#define SLVS_C_VERTICAL 100020
#define SLVS_C_DIAMETER 100021
#define SLVS_C_PT_ON_CIRCLE 100022
#define SLVS_C_SAME_ORIENTATION 100023
#define SLVS_C_ANGLE 100024
#define SLVS_C_PARALLEL 100025
#define SLVS_C_PERPENDICULAR 100026
#define SLVS_C_ARC_LINE_TANGENT 100027
#define SLVS_C_CUBIC_LINE_TANGENT 100028
#define SLVS_C_EQUAL_RADIUS 100029
#define SLVS_C_PROJ_PT_DISTANCE 100030
#define SLVS_C_WHERE_DRAGGED 100031
#define SLVS_C_CURVE_CURVE_TANGENT 100032
#define SLVS_C_LENGTH_DIFFERENCE 100033
#define SLVS_C_ARC_ARC_LEN_RATIO 100034
#define SLVS_C_ARC_LINE_LEN_RATIO 100035
#define SLVS_C_ARC_ARC_DIFFERENCE 100036
#define SLVS_C_ARC_LINE_DIFFERENCE 100037
typedef struct {
Slvs_hConstraint h;
Slvs_hGroup group;
int type;
Slvs_hEntity wrkpl;
double valA;
Slvs_hEntity ptA;
Slvs_hEntity ptB;
Slvs_hEntity entityA;
Slvs_hEntity entityB;
Slvs_hEntity entityC;
Slvs_hEntity entityD;
2015-03-29 00:30:52 +00:00
int other;
int other2;
} Slvs_Constraint;
typedef struct {
/*** INPUT VARIABLES
*
* Here, we specify the parameters and their initial values, the entities,
* and the constraints. For example, param[] points to the array of
* parameters, which has length params, so that the last valid element
* is param[params-1].
*
* param[] is actually an in/out variable; if the solver is successful,
* then the new values (that satisfy the constraints) are written to it. */
Slvs_Param *param;
int params;
Slvs_Entity *entity;
int entities;
Slvs_Constraint *constraint;
int constraints;
/* If a parameter corresponds to a point (distance, normal, etc.) being
* dragged, then specify it here. This will cause the solver to favor
* that parameter, and attempt to change it as little as possible even
* if that requires it to change other parameters more.
*
* Unused members of this array should be set to zero. */
Slvs_hParam dragged[4];
/* If the solver fails, then it can determine which constraints are
* causing the problem. But this is a relatively slow process (for
* a system with n constraints, about n times as long as just solving).
* If calculateFaileds is true, then the solver will do so, otherwise
* not. */
int calculateFaileds;
/*** OUTPUT VARIABLES
*
* If the solver fails, then it can report which constraints are causing
* the problem. The caller should allocate the array failed[], and pass
* its size in faileds.
*
* The solver will set faileds equal to the number of problematic
* constraints, and write their Slvs_hConstraints into failed[]. To
* ensure that there is sufficient space for any possible set of
* failing constraints, faileds should be greater than or equal to
* constraints. */
Slvs_hConstraint *failed;
int faileds;
/* The solver indicates the number of unconstrained degrees of freedom. */
int dof;
/* The solver indicates whether the solution succeeded. */
#define SLVS_RESULT_OKAY 0
#define SLVS_RESULT_INCONSISTENT 1
#define SLVS_RESULT_DIDNT_CONVERGE 2
#define SLVS_RESULT_TOO_MANY_UNKNOWNS 3
int result;
} Slvs_System;
DLL void Slvs_Solve(Slvs_System *sys, Slvs_hGroup hg);
/* Our base coordinate system has basis vectors
* (1, 0, 0) (0, 1, 0) (0, 0, 1)
* A unit quaternion defines a rotation to a new coordinate system with
* basis vectors
* U V N
* which these functions compute from the quaternion. */
DLL void Slvs_QuaternionU(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
DLL void Slvs_QuaternionV(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
DLL void Slvs_QuaternionN(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
/* Similarly, compute a unit quaternion in terms of two basis vectors. */
DLL void Slvs_MakeQuaternion(double ux, double uy, double uz,
double vx, double vy, double vz,
double *qw, double *qx, double *qy, double *qz);
/*-------------------------------------
* These are just convenience functions, to save you the trouble of filling
* out the structures by hand. The code is included in the header file to
* let the compiler inline them if possible. */
static inline Slvs_Param Slvs_MakeParam(Slvs_hParam h, Slvs_hGroup group, double val)
{
Slvs_Param r;
r.h = h;
r.group = group;
r.val = val;
return r;
}
static inline Slvs_Entity Slvs_MakePoint2d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hParam u, Slvs_hParam v)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_POINT_IN_2D;
r.wrkpl = wrkpl;
r.param[0] = u;
r.param[1] = v;
return r;
}
static inline Slvs_Entity Slvs_MakePoint3d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hParam x, Slvs_hParam y, Slvs_hParam z)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_POINT_IN_3D;
r.wrkpl = SLVS_FREE_IN_3D;
r.param[0] = x;
r.param[1] = y;
r.param[2] = z;
return r;
}
static inline Slvs_Entity Slvs_MakeNormal3d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hParam qw, Slvs_hParam qx,
Slvs_hParam qy, Slvs_hParam qz)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_NORMAL_IN_3D;
r.wrkpl = SLVS_FREE_IN_3D;
r.param[0] = qw;
r.param[1] = qx;
r.param[2] = qy;
r.param[3] = qz;
return r;
}
static inline Slvs_Entity Slvs_MakeNormal2d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_NORMAL_IN_2D;
r.wrkpl = wrkpl;
return r;
}
static inline Slvs_Entity Slvs_MakeDistance(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl, Slvs_hParam d)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_DISTANCE;
r.wrkpl = wrkpl;
r.param[0] = d;
return r;
}
static inline Slvs_Entity Slvs_MakeLineSegment(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity ptA, Slvs_hEntity ptB)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_LINE_SEGMENT;
r.wrkpl = wrkpl;
r.point[0] = ptA;
r.point[1] = ptB;
return r;
}
static inline Slvs_Entity Slvs_MakeCubic(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity pt0, Slvs_hEntity pt1,
Slvs_hEntity pt2, Slvs_hEntity pt3)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_CUBIC;
r.wrkpl = wrkpl;
r.point[0] = pt0;
r.point[1] = pt1;
r.point[2] = pt2;
r.point[3] = pt3;
return r;
}
static inline Slvs_Entity Slvs_MakeArcOfCircle(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity normal,
Slvs_hEntity center,
Slvs_hEntity start, Slvs_hEntity end)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_ARC_OF_CIRCLE;
r.wrkpl = wrkpl;
r.normal = normal;
r.point[0] = center;
r.point[1] = start;
r.point[2] = end;
return r;
}
static inline Slvs_Entity Slvs_MakeCircle(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity center,
Slvs_hEntity normal, Slvs_hEntity radius)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_CIRCLE;
r.wrkpl = wrkpl;
r.point[0] = center;
r.normal = normal;
r.distance = radius;
return r;
}
static inline Slvs_Entity Slvs_MakeWorkplane(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity origin, Slvs_hEntity normal)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_WORKPLANE;
r.wrkpl = SLVS_FREE_IN_3D;
r.point[0] = origin;
r.normal = normal;
return r;
}
static inline Slvs_Constraint Slvs_MakeConstraint(Slvs_hConstraint h,
Slvs_hGroup group,
int type,
Slvs_hEntity wrkpl,
double valA,
Slvs_hEntity ptA,
Slvs_hEntity ptB,
Slvs_hEntity entityA,
Slvs_hEntity entityB)
{
Slvs_Constraint r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = type;
r.wrkpl = wrkpl;
r.valA = valA;
r.ptA = ptA;
r.ptB = ptB;
r.entityA = entityA;
r.entityB = entityB;
return r;
}
#ifdef __cplusplus
}
#endif
#endif