solvespace/src/util.cpp

1229 lines
32 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// Utility functions, mostly various kinds of vector math (working on real
// numbers, not working on quantities in the symbolic algebra system).
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
std::string SolveSpace::ssprintf(const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
int size = vsnprintf(NULL, 0, fmt, va);
ssassert(size >= 0, "vsnprintf could not encode string");
va_end(va);
std::string result;
2016-10-11 23:01:20 +00:00
result.resize(size + 1);
va_start(va, fmt);
vsnprintf(&result[0], size + 1, fmt, va);
va_end(va);
2016-10-11 23:01:20 +00:00
result.resize(size);
return result;
}
char32_t utf8_iterator::operator*()
{
const uint8_t *it = (const uint8_t*) this->p;
char32_t result = *it;
if((result & 0x80) != 0) {
unsigned int mask = 0x40;
do {
result <<= 6;
unsigned int c = (*++it);
mask <<= 5;
result += c - 0x80;
} while((result & mask) != 0);
result &= mask - 1;
}
this->n = (const char*) (it + 1);
return result;
}
bool SolveSpace::FilenameHasExtension(const std::string &str, const char *ext)
{
int i, ls = str.length(), le = strlen(ext);
if(ls < le) return false;
2015-03-29 00:30:52 +00:00
for(i = 0; i < le; i++) {
if(tolower(ext[le-i-1]) != tolower(str[ls-i-1])) {
return false;
}
}
return true;
}
std::string SolveSpace::Extension(const std::string &filename) {
int dot = filename.rfind('.');
if(dot >= 0) {
std::string ext = filename.substr(dot + 1, filename.length());
std::transform(ext.begin(), ext.end(), ext.begin(), ::tolower);
return ext;
}
return "";
}
std::string SolveSpace::Basename(std::string filename, bool stripExtension) {
int slash = filename.rfind(PATH_SEP);
if(slash >= 0) {
filename = filename.substr(slash + 1, filename.length());
}
if(stripExtension) {
int dot = filename.rfind('.');
if(dot >= 0) {
filename = filename.substr(0, dot);
}
}
return filename;
}
std::string SolveSpace::Dirname(std::string filename) {
int slash = filename.rfind(PATH_SEP);
if(slash >= 0) {
return filename.substr(0, slash);
}
return "";
}
bool SolveSpace::ReadFile(const std::string &filename, std::string *data)
{
FILE *f = ssfopen(filename.c_str(), "rb");
if(f == NULL)
return false;
fseek(f, 0, SEEK_END);
data->resize(ftell(f));
fseek(f, 0, SEEK_SET);
fread(&(*data)[0], 1, data->size(), f);
fclose(f);
return true;
}
bool SolveSpace::WriteFile(const std::string &filename, const std::string &data)
{
FILE *f = ssfopen(filename.c_str(), "wb");
if(f == NULL)
return false;
fwrite(&data[0], 1, data.size(), f);
fclose(f);
return true;
}
int64_t SolveSpace::GetMilliseconds()
{
auto timestamp = std::chrono::steady_clock::now().time_since_epoch();
return std::chrono::duration_cast<std::chrono::milliseconds>(timestamp).count();
}
void SolveSpace::MakeMatrix(double *mat,
double a11, double a12, double a13, double a14,
double a21, double a22, double a23, double a24,
double a31, double a32, double a33, double a34,
double a41, double a42, double a43, double a44)
{
mat[ 0] = a11;
mat[ 1] = a21;
mat[ 2] = a31;
mat[ 3] = a41;
mat[ 4] = a12;
mat[ 5] = a22;
mat[ 6] = a32;
mat[ 7] = a42;
mat[ 8] = a13;
mat[ 9] = a23;
mat[10] = a33;
mat[11] = a43;
mat[12] = a14;
mat[13] = a24;
mat[14] = a34;
mat[15] = a44;
}
void SolveSpace::MultMatrix(double *mata, double *matb, double *matr) {
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
double s = 0.0;
for(int k = 0; k < 4; k++) {
s += mata[k * 4 + j] * matb[i * 4 + k];
}
matr[i * 4 + j] = s;
}
}
}
//-----------------------------------------------------------------------------
// Word-wrap the string for our message box appropriately, and then display
// that string.
//-----------------------------------------------------------------------------
static void DoStringForMessageBox(const char *str, va_list f, bool error)
{
char inBuf[1024*50];
vsprintf(inBuf, str, f);
char outBuf[1024*50];
int i = 0, j = 0, len = 0, longestLen = 47;
int rows = 0, cols = 0;
// Count the width of the longest line that starts with spaces; those
// are list items, that should not be split in the middle.
bool listLine = false;
while(inBuf[i]) {
if(inBuf[i] == '\r') {
// ignore these
} else if(inBuf[i] == ' ' && len == 0) {
listLine = true;
} else if(inBuf[i] == '\n') {
if(listLine) longestLen = max(longestLen, len);
len = 0;
} else {
len++;
}
i++;
}
if(listLine) longestLen = max(longestLen, len);
// Word wrap according to our target line length longestLen.
len = 0;
i = 0;
while(inBuf[i]) {
if(inBuf[i] == '\r') {
// ignore these
} else if(inBuf[i] == '\n') {
outBuf[j++] = '\n';
if(len == 0) rows++;
len = 0;
} else if(inBuf[i] == ' ' && len > longestLen) {
outBuf[j++] = '\n';
len = 0;
} else {
outBuf[j++] = inBuf[i];
// Count rows when we draw the first character; so an empty
// row doesn't end up counting.
if(len == 0) rows++;
len++;
}
cols = max(cols, len);
i++;
}
outBuf[j++] = '\0';
// And then display the text with our actual longest line length.
DoMessageBox(outBuf, rows, cols, error);
}
void SolveSpace::Error(const char *str, ...)
{
va_list f;
va_start(f, str);
DoStringForMessageBox(str, f, /*error=*/true);
va_end(f);
}
void SolveSpace::Message(const char *str, ...)
{
va_list f;
va_start(f, str);
DoStringForMessageBox(str, f, /*error=*/false);
va_end(f);
}
void SolveSpace::CnfFreezeBool(bool v, const std::string &name)
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
{ CnfFreezeInt(v ? 1 : 0, name); }
void SolveSpace::CnfFreezeColor(RgbaColor v, const std::string &name)
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
{ CnfFreezeInt(v.ToPackedInt(), name); }
bool SolveSpace::CnfThawBool(bool v, const std::string &name)
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
{ return CnfThawInt(v ? 1 : 0, name) != 0; }
RgbaColor SolveSpace::CnfThawColor(RgbaColor v, const std::string &name)
2015-07-10 11:54:39 +00:00
{ return RgbaColor::FromPackedInt(CnfThawInt(v.ToPackedInt(), name)); }
Replaced RGB-color integers with dedicated data structure RGB colors were represented using a uint32_t with the red, green and blue values stuffed into the lower three octets (i.e. 0x00BBGGRR), like Microsoft's COLORREF. This approach did not lend itself to type safety, however, so this change replaces it with an RgbColor class that provides the same infomation plus a handful of useful methods to work with it. (Note that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead to memory bloat.) Some of the new methods/fields replace what were previously macro calls; e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is now used instead of == to compare colors. RGB colors still need to be represented as packed integers in file I/O and preferences, so the methods .FromPackedInt() and .ToPackedInt() are provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences. (Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code to minimize the footprint of the latter; because the same can be done with Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with this commit.) Color integers were being OR'ed with 0x80000000 in some places for two distinct purposes: One, to indicate use of a default color in glxFillMesh(); this has been replaced by use of the .UseDefault() method. Two, to indicate to TextWindow::Printf() that the format argument of a "%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code exclusively. (This also allows TextWindow::meta[][].bg to be a char instead of an int, partly compensating for the new .bgRgb field added immediately after.) In array declarations, RGB colors could previously be specified as 0 (often in a terminating element). As that no longer works, we define NULL_COLOR, which serves much the same purpose for RgbColor variables as NULL serves for pointers.
2013-10-16 20:00:58 +00:00
//-----------------------------------------------------------------------------
// Solve a mostly banded matrix. In a given row, there are LEFT_OF_DIAG
// elements to the left of the diagonal element, and RIGHT_OF_DIAG elements to
// the right (so that the total band width is LEFT_OF_DIAG + RIGHT_OF_DIAG + 1).
// There also may be elements in the last two columns of any row. We solve
// without pivoting.
//-----------------------------------------------------------------------------
void BandedMatrix::Solve() {
int i, ip, j, jp;
double temp;
// Reduce the matrix to upper triangular form.
for(i = 0; i < n; i++) {
for(ip = i+1; ip < n && ip <= (i + LEFT_OF_DIAG); ip++) {
temp = A[ip][i]/A[i][i];
for(jp = i; jp < (n - 2) && jp <= (i + RIGHT_OF_DIAG); jp++) {
A[ip][jp] -= temp*(A[i][jp]);
}
A[ip][n-2] -= temp*(A[i][n-2]);
A[ip][n-1] -= temp*(A[i][n-1]);
B[ip] -= temp*B[i];
}
}
// And back-substitute.
for(i = n - 1; i >= 0; i--) {
temp = B[i];
if(i < n-1) temp -= X[n-1]*A[i][n-1];
if(i < n-2) temp -= X[n-2]*A[i][n-2];
for(j = min(n - 3, i + RIGHT_OF_DIAG); j > i; j--) {
temp -= X[j]*A[i][j];
}
X[i] = temp / A[i][i];
}
}
const Quaternion Quaternion::IDENTITY = { 1, 0, 0, 0 };
Quaternion Quaternion::From(double w, double vx, double vy, double vz) {
Quaternion q;
q.w = w;
q.vx = vx;
q.vy = vy;
q.vz = vz;
return q;
}
Quaternion Quaternion::From(hParam w, hParam vx, hParam vy, hParam vz) {
Quaternion q;
q.w = SK.GetParam(w )->val;
q.vx = SK.GetParam(vx)->val;
q.vy = SK.GetParam(vy)->val;
q.vz = SK.GetParam(vz)->val;
return q;
}
Quaternion Quaternion::From(Vector axis, double dtheta) {
Quaternion q;
double c = cos(dtheta / 2), s = sin(dtheta / 2);
axis = axis.WithMagnitude(s);
q.w = c;
q.vx = axis.x;
q.vy = axis.y;
q.vz = axis.z;
return q;
}
Quaternion Quaternion::From(Vector u, Vector v)
{
Vector n = u.Cross(v);
Quaternion q;
double s, tr = 1 + u.x + v.y + n.z;
if(tr > 1e-4) {
s = 2*sqrt(tr);
q.w = s/4;
q.vx = (v.z - n.y)/s;
q.vy = (n.x - u.z)/s;
q.vz = (u.y - v.x)/s;
} else {
if(u.x > v.y && u.x > n.z) {
s = 2*sqrt(1 + u.x - v.y - n.z);
q.w = (v.z - n.y)/s;
q.vx = s/4;
q.vy = (u.y + v.x)/s;
q.vz = (n.x + u.z)/s;
} else if(v.y > n.z) {
s = 2*sqrt(1 - u.x + v.y - n.z);
q.w = (n.x - u.z)/s;
q.vx = (u.y + v.x)/s;
q.vy = s/4;
q.vz = (v.z + n.y)/s;
} else {
s = 2*sqrt(1 - u.x - v.y + n.z);
q.w = (u.y - v.x)/s;
q.vx = (n.x + u.z)/s;
q.vy = (v.z + n.y)/s;
q.vz = s/4;
}
}
return q.WithMagnitude(1);
}
Quaternion Quaternion::Plus(Quaternion b) const {
Quaternion q;
q.w = w + b.w;
q.vx = vx + b.vx;
q.vy = vy + b.vy;
q.vz = vz + b.vz;
return q;
}
Quaternion Quaternion::Minus(Quaternion b) const {
Quaternion q;
q.w = w - b.w;
q.vx = vx - b.vx;
q.vy = vy - b.vy;
q.vz = vz - b.vz;
return q;
}
Quaternion Quaternion::ScaledBy(double s) const {
Quaternion q;
q.w = w*s;
q.vx = vx*s;
q.vy = vy*s;
q.vz = vz*s;
return q;
}
double Quaternion::Magnitude() const {
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
}
Quaternion Quaternion::WithMagnitude(double s) const {
return ScaledBy(s/Magnitude());
}
Vector Quaternion::RotationU() const {
Vector v;
v.x = w*w + vx*vx - vy*vy - vz*vz;
v.y = 2*w *vz + 2*vx*vy;
v.z = 2*vx*vz - 2*w *vy;
return v;
}
Vector Quaternion::RotationV() const {
Vector v;
v.x = 2*vx*vy - 2*w*vz;
v.y = w*w - vx*vx + vy*vy - vz*vz;
v.z = 2*w*vx + 2*vy*vz;
return v;
}
Vector Quaternion::RotationN() const {
Vector v;
v.x = 2*w*vy + 2*vx*vz;
v.y = 2*vy*vz - 2*w*vx;
v.z = w*w - vx*vx - vy*vy + vz*vz;
return v;
}
Vector Quaternion::Rotate(Vector p) const {
// Express the point in the new basis
return (RotationU().ScaledBy(p.x)).Plus(
RotationV().ScaledBy(p.y)).Plus(
RotationN().ScaledBy(p.z));
}
Quaternion Quaternion::Inverse() const {
Quaternion r;
r.w = w;
r.vx = -vx;
r.vy = -vy;
r.vz = -vz;
return r.WithMagnitude(1); // not that the normalize should be reqd
}
Quaternion Quaternion::ToThe(double p) const {
// Avoid division by zero, or arccos of something not in its domain
if(w >= (1 - 1e-6)) {
return From(1, 0, 0, 0);
} else if(w <= (-1 + 1e-6)) {
return From(-1, 0, 0, 0);
}
Quaternion r;
Vector axis = Vector::From(vx, vy, vz);
double theta = acos(w); // okay, since magnitude is 1, so -1 <= w <= 1
theta *= p;
r.w = cos(theta);
axis = axis.WithMagnitude(sin(theta));
r.vx = axis.x;
r.vy = axis.y;
r.vz = axis.z;
return r;
}
Quaternion Quaternion::Times(Quaternion b) const {
double sa = w, sb = b.w;
Vector va = { vx, vy, vz };
Vector vb = { b.vx, b.vy, b.vz };
Quaternion r;
r.w = sa*sb - va.Dot(vb);
Vector vr = vb.ScaledBy(sa).Plus(
va.ScaledBy(sb).Plus(
va.Cross(vb)));
r.vx = vr.x;
r.vy = vr.y;
r.vz = vr.z;
return r;
}
Quaternion Quaternion::Mirror() const {
Vector u = RotationU(),
v = RotationV();
u = u.ScaledBy(-1);
v = v.ScaledBy(-1);
return Quaternion::From(u, v);
}
Vector Vector::From(double x, double y, double z) {
Vector v;
v.x = x; v.y = y; v.z = z;
return v;
}
Vector Vector::From(hParam x, hParam y, hParam z) {
Vector v;
v.x = SK.GetParam(x)->val;
v.y = SK.GetParam(y)->val;
v.z = SK.GetParam(z)->val;
return v;
}
double Vector::Element(int i) const {
switch(i) {
case 0: return x;
case 1: return y;
case 2: return z;
default: ssassert(false, "Unexpected vector element index");
}
}
bool Vector::Equals(Vector v, double tol) const {
// Quick axis-aligned tests before going further
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
double dz = v.z - z; if(dz < -tol || dz > tol) return false;
return (this->Minus(v)).MagSquared() < tol*tol;
}
bool Vector::EqualsExactly(Vector v) const {
return EXACT(x == v.x &&
y == v.y &&
z == v.z);
}
Vector Vector::Plus(Vector b) const {
Vector r;
r.x = x + b.x;
r.y = y + b.y;
r.z = z + b.z;
return r;
}
Vector Vector::Minus(Vector b) const {
Vector r;
r.x = x - b.x;
r.y = y - b.y;
r.z = z - b.z;
return r;
}
Vector Vector::Negated() const {
Vector r;
r.x = -x;
r.y = -y;
r.z = -z;
return r;
}
Vector Vector::Cross(Vector b) const {
Vector r;
r.x = -(z*b.y) + (y*b.z);
r.y = (z*b.x) - (x*b.z);
r.z = -(y*b.x) + (x*b.y);
return r;
}
double Vector::Dot(Vector b) const {
return (x*b.x + y*b.y + z*b.z);
}
double Vector::DirectionCosineWith(Vector b) const {
Vector a = this->WithMagnitude(1);
b = b.WithMagnitude(1);
return a.Dot(b);
}
Vector Vector::Normal(int which) const {
Vector n;
// Arbitrarily choose one vector that's normal to us, pivoting
// appropriately.
double xa = fabs(x), ya = fabs(y), za = fabs(z);
if(this->Equals(Vector::From(0, 0, 1))) {
// Make DXFs exported in the XY plane work nicely...
n = Vector::From(1, 0, 0);
} else if(xa < ya && xa < za) {
n.x = 0;
n.y = z;
n.z = -y;
} else if(ya < za) {
n.x = -z;
n.y = 0;
n.z = x;
} else {
n.x = y;
n.y = -x;
n.z = 0;
}
if(which == 0) {
// That's the vector we return.
} else if(which == 1) {
n = this->Cross(n);
} else ssassert(false, "Unexpected vector normal index");
n = n.WithMagnitude(1);
return n;
}
Vector Vector::RotatedAbout(Vector orig, Vector axis, double theta) const {
Vector r = this->Minus(orig);
r = r.RotatedAbout(axis, theta);
return r.Plus(orig);
}
Vector Vector::RotatedAbout(Vector axis, double theta) const {
double c = cos(theta);
double s = sin(theta);
axis = axis.WithMagnitude(1);
Vector r;
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
(z)*(c + (1 - c)*(axis.z)*(axis.z));
return r;
}
Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) const {
Vector r = {
this->Dot(u),
this->Dot(v),
this->Dot(n)
};
return r;
}
Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) const {
Vector r = u.ScaledBy(x).Plus(
v.ScaledBy(y).Plus(
n.ScaledBy(z)));
return r;
}
2015-03-29 00:30:52 +00:00
Vector Vector::InPerspective(Vector u, Vector v, Vector n,
Vector origin, double cameraTan) const
{
Vector r = this->Minus(origin);
r = r.DotInToCsys(u, v, n);
// yes, minus; we are assuming a csys where u cross v equals n, backwards
// from the display stuff
double w = (1 - r.z*cameraTan);
r = r.ScaledBy(1/w);
return r;
}
double Vector::DistanceToLine(Vector p0, Vector dp) const {
double m = dp.Magnitude();
return ((this->Minus(p0)).Cross(dp)).Magnitude() / m;
}
bool Vector::OnLineSegment(Vector a, Vector b, double tol) const {
if(this->Equals(a, tol) || this->Equals(b, tol)) return true;
Vector d = b.Minus(a);
double m = d.MagSquared();
double distsq = ((this->Minus(a)).Cross(d)).MagSquared() / m;
if(distsq >= tol*tol) return false;
double t = (this->Minus(a)).DivPivoting(d);
// On-endpoint already tested
if(t < 0 || t > 1) return false;
return true;
}
Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) const {
dp = dp.WithMagnitude(1);
// this, p0, and (p0+dp) define a plane; the min distance is in
// that plane, so calculate its normal
Vector pn = (this->Minus(p0)).Cross(dp);
// The minimum distance line is in that plane, perpendicular
// to the line
Vector n = pn.Cross(dp);
// Calculate the actual distance
double d = (dp.Cross(p0.Minus(*this))).Magnitude();
return this->Plus(n.WithMagnitude(d));
}
double Vector::MagSquared() const {
return x*x + y*y + z*z;
}
double Vector::Magnitude() const {
return sqrt(x*x + y*y + z*z);
}
Vector Vector::ScaledBy(double v) const {
Vector r;
r.x = x * v;
r.y = y * v;
r.z = z * v;
return r;
}
Vector Vector::WithMagnitude(double v) const {
double m = Magnitude();
if(EXACT(m == 0)) {
// We can do a zero vector with zero magnitude, but not any other cases.
if(fabs(v) > 1e-100) {
dbp("Vector::WithMagnitude(%g) of zero vector!", v);
}
return From(0, 0, 0);
} else {
return ScaledBy(v/m);
}
}
Vector Vector::ProjectVectorInto(hEntity wrkpl) const {
EntityBase *w = SK.GetEntity(wrkpl);
Vector u = w->Normal()->NormalU();
Vector v = w->Normal()->NormalV();
double up = this->Dot(u);
double vp = this->Dot(v);
return (u.ScaledBy(up)).Plus(v.ScaledBy(vp));
}
Vector Vector::ProjectInto(hEntity wrkpl) const {
EntityBase *w = SK.GetEntity(wrkpl);
Vector p0 = w->WorkplaneGetOffset();
Vector f = this->Minus(p0);
return p0.Plus(f.ProjectVectorInto(wrkpl));
}
Point2d Vector::Project2d(Vector u, Vector v) const {
Point2d p;
p.x = this->Dot(u);
p.y = this->Dot(v);
return p;
}
Point2d Vector::ProjectXy() const {
Point2d p;
p.x = x;
p.y = y;
return p;
}
Vector4 Vector::Project4d() const {
return Vector4::From(1, x, y, z);
}
double Vector::DivPivoting(Vector delta) const {
double mx = fabs(delta.x), my = fabs(delta.y), mz = fabs(delta.z);
if(mx > my && mx > mz) {
return x/delta.x;
} else if(my > mz) {
return y/delta.y;
} else {
return z/delta.z;
}
}
Vector Vector::ClosestOrtho() const {
double mx = fabs(x), my = fabs(y), mz = fabs(z);
if(mx > my && mx > mz) {
return From((x > 0) ? 1 : -1, 0, 0);
} else if(my > mz) {
return From(0, (y > 0) ? 1 : -1, 0);
} else {
return From(0, 0, (z > 0) ? 1 : -1);
}
}
Vector Vector::ClampWithin(double minv, double maxv) const {
Vector ret = *this;
if(ret.x < minv) ret.x = minv;
if(ret.y < minv) ret.y = minv;
if(ret.z < minv) ret.z = minv;
if(ret.x > maxv) ret.x = maxv;
if(ret.y > maxv) ret.y = maxv;
if(ret.z > maxv) ret.z = maxv;
return ret;
}
void Vector::MakeMaxMin(Vector *maxv, Vector *minv) const {
maxv->x = max(maxv->x, x);
maxv->y = max(maxv->y, y);
maxv->z = max(maxv->z, z);
minv->x = min(minv->x, x);
minv->y = min(minv->y, y);
minv->z = min(minv->z, z);
}
bool Vector::OutsideAndNotOn(Vector maxv, Vector minv) const {
return (x > maxv.x + LENGTH_EPS) || (x < minv.x - LENGTH_EPS) ||
(y > maxv.y + LENGTH_EPS) || (y < minv.y - LENGTH_EPS) ||
(z > maxv.z + LENGTH_EPS) || (z < minv.z - LENGTH_EPS);
}
bool Vector::BoundingBoxesDisjoint(Vector amax, Vector amin,
Vector bmax, Vector bmin)
{
int i;
for(i = 0; i < 3; i++) {
if(amax.Element(i) < bmin.Element(i) - LENGTH_EPS) return true;
if(amin.Element(i) > bmax.Element(i) + LENGTH_EPS) return true;
}
return false;
}
bool Vector::BoundingBoxIntersectsLine(Vector amax, Vector amin,
Vector p0, Vector p1, bool asSegment)
{
Vector dp = p1.Minus(p0);
double lp = dp.Magnitude();
dp = dp.ScaledBy(1.0/lp);
int i, a;
for(i = 0; i < 3; i++) {
int j = WRAP(i+1, 3), k = WRAP(i+2, 3);
if(lp*fabs(dp.Element(i)) < LENGTH_EPS) continue; // parallel to plane
for(a = 0; a < 2; a++) {
double d = (a == 0) ? amax.Element(i) : amin.Element(i);
// n dot (p0 + t*dp) = d
// (n dot p0) + t * (n dot dp) = d
double t = (d - p0.Element(i)) / dp.Element(i);
Vector p = p0.Plus(dp.ScaledBy(t));
if(asSegment && (t < -LENGTH_EPS || t > (lp+LENGTH_EPS))) continue;
if(p.Element(j) > amax.Element(j) + LENGTH_EPS) continue;
if(p.Element(k) > amax.Element(k) + LENGTH_EPS) continue;
if(p.Element(j) < amin.Element(j) - LENGTH_EPS) continue;
if(p.Element(k) < amin.Element(k) - LENGTH_EPS) continue;
return true;
}
}
return false;
}
Vector Vector::AtIntersectionOfPlanes(Vector n1, double d1,
Vector n2, double d2)
{
2015-03-29 00:30:52 +00:00
double det = (n1.Dot(n1))*(n2.Dot(n2)) -
(n1.Dot(n2))*(n1.Dot(n2));
double c1 = (d1*n2.Dot(n2) - d2*n1.Dot(n2))/det;
double c2 = (d2*n1.Dot(n1) - d1*n1.Dot(n2))/det;
2015-03-29 00:30:52 +00:00
return (n1.ScaledBy(c1)).Plus(n2.ScaledBy(c2));
}
void Vector::ClosestPointBetweenLines(Vector a0, Vector da,
Vector b0, Vector db,
double *ta, double *tb)
{
// Make a semi-orthogonal coordinate system from those directions;
// note that dna and dnb need not be perpendicular.
Vector dn = da.Cross(db); // normal to both
Vector dna = dn.Cross(da); // normal to da
Vector dnb = dn.Cross(db); // normal to db
// At the intersection of the lines
// a0 + pa*da = b0 + pb*db (where pa, pb are scalar params)
// So dot this equation against dna and dnb to get two equations
// to solve for da and db
*tb = ((a0.Minus(b0)).Dot(dna))/(db.Dot(dna));
2015-03-29 00:30:52 +00:00
*ta = -((a0.Minus(b0)).Dot(dnb))/(da.Dot(dnb));
}
Vector Vector::AtIntersectionOfLines(Vector a0, Vector a1,
Vector b0, Vector b1,
bool *skew,
double *parama, double *paramb)
{
Vector da = a1.Minus(a0), db = b1.Minus(b0);
double pa, pb;
Vector::ClosestPointBetweenLines(a0, da, b0, db, &pa, &pb);
if(parama) *parama = pa;
if(paramb) *paramb = pb;
// And from either of those, we get the intersection point.
Vector pi = a0.Plus(da.ScaledBy(pa));
if(skew) {
// Check if the intersection points on each line are actually
// coincident...
if(pi.Equals(b0.Plus(db.ScaledBy(pb)))) {
*skew = false;
} else {
*skew = true;
}
}
return pi;
}
Vector Vector::AtIntersectionOfPlaneAndLine(Vector n, double d,
Vector p0, Vector p1,
bool *parallel)
{
Vector dp = p1.Minus(p0);
if(fabs(n.Dot(dp)) < LENGTH_EPS) {
if(parallel) *parallel = true;
return Vector::From(0, 0, 0);
}
if(parallel) *parallel = false;
// n dot (p0 + t*dp) = d
// (n dot p0) + t * (n dot dp) = d
double t = (d - n.Dot(p0)) / (n.Dot(dp));
return p0.Plus(dp.ScaledBy(t));
}
static double det2(double a1, double b1,
double a2, double b2)
{
return (a1*b2) - (b1*a2);
}
static double det3(double a1, double b1, double c1,
double a2, double b2, double c2,
double a3, double b3, double c3)
{
return a1*det2(b2, c2, b3, c3) -
b1*det2(a2, c2, a3, c3) +
c1*det2(a2, b2, a3, b3);
}
Vector Vector::AtIntersectionOfPlanes(Vector na, double da,
Vector nb, double db,
Vector nc, double dc,
bool *parallel)
{
double det = det3(na.x, na.y, na.z,
nb.x, nb.y, nb.z,
nc.x, nc.y, nc.z);
if(fabs(det) < 1e-10) { // arbitrary tolerance, not so good
*parallel = true;
return Vector::From(0, 0, 0);
}
*parallel = false;
double detx = det3(da, na.y, na.z,
db, nb.y, nb.z,
dc, nc.y, nc.z);
double dety = det3(na.x, da, na.z,
nb.x, db, nb.z,
nc.x, dc, nc.z);
double detz = det3(na.x, na.y, da,
nb.x, nb.y, db,
nc.x, nc.y, dc );
return Vector::From(detx/det, dety/det, detz/det);
}
size_t VectorHash::operator()(const Vector &v) const {
const size_t size = (size_t)pow(std::numeric_limits<size_t>::max(), 1.0 / 3.0) - 1;
const double eps = 4.0 * LENGTH_EPS;
double x = fabs(v.x) / eps;
double y = fabs(v.y) / eps;
double z = fabs(v.y) / eps;
size_t xs = size_t(fmod(x, (double)size));
size_t ys = size_t(fmod(y, (double)size));
size_t zs = size_t(fmod(z, (double)size));
return (zs * size + ys) * size + xs;
}
bool VectorPred::operator()(Vector a, Vector b) const {
return a.Equals(b, LENGTH_EPS);
}
Vector4 Vector4::From(double w, double x, double y, double z) {
Vector4 ret;
ret.w = w;
ret.x = x;
ret.y = y;
ret.z = z;
return ret;
}
Vector4 Vector4::From(double w, Vector v) {
return Vector4::From(w, w*v.x, w*v.y, w*v.z);
}
Vector4 Vector4::Blend(Vector4 a, Vector4 b, double t) {
return (a.ScaledBy(1 - t)).Plus(b.ScaledBy(t));
}
Vector4 Vector4::Plus(Vector4 b) const {
return Vector4::From(w + b.w, x + b.x, y + b.y, z + b.z);
}
Vector4 Vector4::Minus(Vector4 b) const {
return Vector4::From(w - b.w, x - b.x, y - b.y, z - b.z);
}
Vector4 Vector4::ScaledBy(double s) const {
return Vector4::From(w*s, x*s, y*s, z*s);
}
Vector Vector4::PerspectiveProject() const {
return Vector::From(x / w, y / w, z / w);
}
Point2d Point2d::From(double x, double y) {
return { x, y };
}
Point2d Point2d::FromPolar(double r, double a) {
return { r * cos(a), r * sin(a) };
}
double Point2d::Angle() const {
double a = atan2(y, x);
return M_PI + remainder(a - M_PI, 2 * M_PI);
}
double Point2d::AngleTo(const Point2d &p) const {
return p.Minus(*this).Angle();
}
Point2d Point2d::Plus(const Point2d &b) const {
return { x + b.x, y + b.y };
}
Point2d Point2d::Minus(const Point2d &b) const {
return { x - b.x, y - b.y };
}
Point2d Point2d::ScaledBy(double s) const {
return { x * s, y * s };
}
double Point2d::DivPivoting(Point2d delta) const {
if(fabs(delta.x) > fabs(delta.y)) {
return x/delta.x;
} else {
return y/delta.y;
}
}
double Point2d::MagSquared() const {
return x*x + y*y;
}
double Point2d::Magnitude() const {
return sqrt(x*x + y*y);
}
Point2d Point2d::WithMagnitude(double v) const {
double m = Magnitude();
if(m < 1e-20) {
dbp("!!! WithMagnitude() of zero vector");
return { v, 0 };
}
return { x * v / m, y * v / m };
}
double Point2d::DistanceTo(const Point2d &p) const {
double dx = x - p.x;
double dy = y - p.y;
return sqrt(dx*dx + dy*dy);
}
double Point2d::Dot(Point2d p) const {
return x*p.x + y*p.y;
}
double Point2d::DistanceToLine(const Point2d &p0, const Point2d &dp, bool asSegment) const {
double m = dp.x*dp.x + dp.y*dp.y;
if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE;
2015-03-29 00:30:52 +00:00
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
if(asSegment) {
2016-05-05 09:03:30 +00:00
if(t < 0.0) return DistanceTo(p0);
if(t > 1.0) return DistanceTo(p0.Plus(dp));
}
2016-05-05 09:03:30 +00:00
Point2d closest = p0.Plus(dp.ScaledBy(t));
return DistanceTo(closest);
}
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 00:55:13 +00:00
double Point2d::DistanceToLineSigned(const Point2d &p0, const Point2d &dp, bool asSegment) const {
double m = dp.x*dp.x + dp.y*dp.y;
if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE;
Point2d n = dp.Normal().WithMagnitude(1.0);
double dist = n.Dot(*this) - n.Dot(p0);
if(asSegment) {
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
double sign = (dist > 0.0) ? 1.0 : -1.0;
if(t < 0.0) return DistanceTo(p0) * sign;
if(t > 1.0) return DistanceTo(p0.Plus(dp)) * sign;
}
return dist;
}
Point2d Point2d::Normal() const {
return { y, -x };
}
bool Point2d::Equals(Point2d v, double tol) const {
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
return (this->Minus(v)).MagSquared() < tol*tol;
}
2016-02-18 09:53:31 +00:00
BBox BBox::From(const Vector &p0, const Vector &p1) {
BBox bbox;
bbox.minp.x = min(p0.x, p1.x);
bbox.minp.y = min(p0.y, p1.y);
bbox.minp.z = min(p0.z, p1.z);
bbox.maxp.x = max(p0.x, p1.x);
bbox.maxp.y = max(p0.y, p1.y);
bbox.maxp.z = max(p0.z, p1.z);
return bbox;
}
Vector BBox::GetOrigin() const { return minp.Plus(maxp.Minus(minp).ScaledBy(0.5)); }
Vector BBox::GetExtents() const { return maxp.Minus(minp).ScaledBy(0.5); }
void BBox::Include(const Vector &v, double r) {
minp.x = min(minp.x, v.x - r);
minp.y = min(minp.y, v.y - r);
minp.z = min(minp.z, v.z - r);
maxp.x = max(maxp.x, v.x + r);
maxp.y = max(maxp.y, v.y + r);
maxp.z = max(maxp.z, v.z + r);
}
bool BBox::Overlaps(const BBox &b1) const {
Vector t = b1.GetOrigin().Minus(GetOrigin());
Vector e = b1.GetExtents().Plus(GetExtents());
return fabs(t.x) < e.x && fabs(t.y) < e.y && fabs(t.z) < e.z;
}
bool BBox::Contains(const Point2d &p, double r) const {
return p.x >= (minp.x - r) &&
p.y >= (minp.y - r) &&
p.x <= (maxp.x + r) &&
p.y <= (maxp.y + r);
}
const std::vector<double>& SolveSpace::StipplePatternDashes(StipplePattern pattern) {
static bool initialized;
static std::vector<double> dashes[(size_t)StipplePattern::LAST + 1];
if(!initialized) {
// Inkscape ignores all elements that are exactly zero instead of drawing
// them as dots, so set those to 1e-6.
dashes[(size_t)StipplePattern::CONTINUOUS] =
{};
dashes[(size_t)StipplePattern::SHORT_DASH] =
{ 1.0, 2.0 };
dashes[(size_t)StipplePattern::DASH] =
{ 1.0, 1.0 };
dashes[(size_t)StipplePattern::DASH_DOT] =
{ 1.0, 0.5, 1e-6, 0.5 };
dashes[(size_t)StipplePattern::DASH_DOT_DOT] =
{ 1.0, 0.5, 1e-6, 0.5, 0.5, 1e-6 };
dashes[(size_t)StipplePattern::DOT] =
{ 1e-6, 0.5 };
dashes[(size_t)StipplePattern::LONG_DASH] =
{ 2.0, 0.5 };
dashes[(size_t)StipplePattern::FREEHAND] =
{ 1.0, 2.0 };
dashes[(size_t)StipplePattern::ZIGZAG] =
{ 1.0, 2.0 };
}
return dashes[(size_t)pattern];
}
double SolveSpace::StipplePatternLength(StipplePattern pattern) {
static bool initialized;
static double lengths[(size_t)StipplePattern::LAST + 1];
if(!initialized) {
for(size_t i = 0; i < (size_t)StipplePattern::LAST; i++) {
const std::vector<double> &dashes = StipplePatternDashes((StipplePattern)i);
double length = 0.0;
for(double dash : dashes) {
length += dash;
}
lengths[i] = length;
}
}
return lengths[(size_t)pattern];
}