solvespace/srf/triangulate.cpp

274 lines
7.5 KiB
C++
Raw Normal View History

#include "../solvespace.h"
void SPolygon::UvTriangulateInto(SMesh *m) {
if(l.n <= 0) return;
SDWORD in = GetMilliseconds();
normal = Vector::From(0, 0, 1);
while(l.n > 0) {
FixContourDirections();
l.ClearTags();
// Find a top-level contour, and start with that. Then build bridges
// in order to merge all its islands into a single contour.
SContour *top;
for(top = l.First(); top; top = l.NextAfter(top)) {
if(top->timesEnclosed == 0) {
break;
}
}
if(!top) {
dbp("polygon has no top-level contours?");
return;
}
// Start with the outer contour
SContour merged;
ZERO(&merged);
top->tag = 1;
top->CopyInto(&merged);
(merged.l.n)--;
// List all of the edges, for testing whether bridges work.
SEdgeList el;
ZERO(&el);
top->MakeEdgesInto(&el);
List<Vector> vl;
ZERO(&vl);
// And now find all of its holes;
SContour *sc;
for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
if(sc->timesEnclosed != 1) continue;
if(sc->l.n < 1) continue;
if(top->ContainsPointProjdToNormal(normal, sc->l.elem[0].p)) {
sc->tag = 2;
sc->MakeEdgesInto(&el);
sc->FindPointWithMinX();
}
}
// dbp("finished finding holes: %d ms", GetMilliseconds() - in);
for(;;) {
double xmin = 1e10;
SContour *scmin = NULL;
for(sc = l.First(); sc; sc = l.NextAfter(sc)) {
if(sc->tag != 2) continue;
if(sc->xminPt.x < xmin) {
xmin = sc->xminPt.x;
scmin = sc;
}
}
if(!scmin) break;
if(!merged.BridgeToContour(scmin, &el, &vl)) {
dbp("couldn't merge our hole");
return;
}
// dbp(" bridged to contour: %d ms", GetMilliseconds() - in);
scmin->tag = 3;
}
// dbp("finished merging holes: %d ms", GetMilliseconds() - in);
merged.UvTriangulateInto(m);
// dbp("finished ear clippping: %d ms", GetMilliseconds() - in);
merged.l.Clear();
el.Clear();
vl.Clear();
l.RemoveTagged();
}
}
bool SContour::BridgeToContour(SContour *sc,
SEdgeList *avoidEdges, List<Vector> *avoidPts)
{
int i, j;
// Start looking for a bridge on our new hole near its leftmost (min x)
// point.
int sco = 0;
for(i = 0; i < (sc->l.n - 1); i++) {
if((sc->l.elem[i].p).EqualsExactly(sc->xminPt)) {
sco = i;
}
}
// And start looking on our merged contour at whichever point is nearest
// to the leftmost point of the new segment.
int thiso = 0;
double dmin = 1e10;
for(i = 0; i < l.n; i++) {
Vector p = l.elem[i].p;
double d = (p.Minus(sc->xminPt)).MagSquared();
if(d < dmin) {
dmin = d;
thiso = i;
}
}
int thisp, scp;
Vector a, b, *f;
for(i = 0; i < l.n; i++) {
thisp = WRAP(i+thiso, l.n);
a = l.elem[thisp].p;
for(f = avoidPts->First(); f; f = avoidPts->NextAfter(f)) {
if(f->Equals(a)) break;
}
if(f) continue;
for(j = 0; j < (sc->l.n - 1); j++) {
scp = WRAP(j+sco, (sc->l.n - 1));
b = sc->l.elem[scp].p;
for(f = avoidPts->First(); f; f = avoidPts->NextAfter(f)) {
if(f->Equals(b)) break;
}
if(f) continue;
if(avoidEdges->AnyEdgeCrossings(a, b) > 0) {
// doesn't work, bridge crosses an existing edge
} else {
goto haveEdge;
}
}
}
// Tried all the possibilities, didn't find an edge
return false;
haveEdge:
SContour merged;
ZERO(&merged);
for(i = 0; i < l.n; i++) {
merged.AddPoint(l.elem[i].p);
if(i == thisp) {
// less than or equal; need to duplicate the join point
for(j = 0; j <= (sc->l.n - 1); j++) {
int jp = WRAP(j + scp, (sc->l.n - 1));
merged.AddPoint((sc->l.elem[jp]).p);
}
// and likewise duplicate join point for the outer curve
merged.AddPoint(l.elem[i].p);
}
}
// and future bridges mustn't cross our bridge, and it's tricky to get
// things right if two bridges come from the same point
avoidEdges->AddEdge(a, b);
avoidPts->Add(&a);
avoidPts->Add(&b);
l.Clear();
l = merged.l;
return true;
}
bool SContour::IsEar(int bp) {
int ap = WRAP(bp-1, l.n),
cp = WRAP(bp+1, l.n);
STriangle tr;
ZERO(&tr);
tr.a = l.elem[ap].p;
tr.b = l.elem[bp].p;
tr.c = l.elem[cp].p;
Vector n = Vector::From(0, 0, -1);
if((tr.Normal()).Dot(n) < LENGTH_EPS) {
// This vertex is reflex, or between two collinear edges; either way,
// it's not an ear.
return false;
}
// Accelerate with an axis-aligned bounding box test
Vector maxv = tr.a, minv = tr.a;
(tr.b).MakeMaxMin(&maxv, &minv);
(tr.c).MakeMaxMin(&maxv, &minv);
int i;
for(i = 0; i < l.n; i++) {
if(i == ap || i == bp || i == cp) continue;
Vector p = l.elem[i].p;
if(p.OutsideAndNotOn(maxv, minv)) continue;
// A point on the edge of the triangle is considered to be inside,
// and therefore makes it a non-ear; but a point on the vertex is
// "outside", since that's necessary to make bridges work.
if(p.EqualsExactly(tr.a)) continue;
if(p.EqualsExactly(tr.b)) continue;
if(p.EqualsExactly(tr.c)) continue;
if(tr.ContainsPointProjd(n, p)) {
return false;
}
}
return true;
}
void SContour::ClipEarInto(SMesh *m, int bp) {
int ap = WRAP(bp-1, l.n),
cp = WRAP(bp+1, l.n);
STriangle tr;
ZERO(&tr);
tr.a = l.elem[ap].p;
tr.b = l.elem[bp].p;
tr.c = l.elem[cp].p;
m->AddTriangle(&tr);
// By deleting the point at bp, we may change the ear-ness of the points
// on either side.
l.elem[ap].ear = SPoint::UNKNOWN;
l.elem[cp].ear = SPoint::UNKNOWN;
l.ClearTags();
l.elem[bp].tag = 1;
l.RemoveTagged();
}
void SContour::UvTriangulateInto(SMesh *m) {
int i;
// First, calculate the ear-ness of all the points
for(i = 0; i < l.n; i++) {
(l.elem[i]).ear = IsEar(i) ? SPoint::EAR : SPoint::NOT_EAR;
}
bool toggle = false;
while(l.n > 3) {
// Some points may have changed ear-ness, so recalculate
for(i = 0; i < l.n; i++) {
if(l.elem[i].ear == SPoint::UNKNOWN) {
(l.elem[i]).ear = IsEar(i) ? SPoint::EAR : SPoint::NOT_EAR;
}
}
// And find a candidate ear; alternate the starting position so
// we generate strip-like triangulations instead of fan-like
int ear = -1;
toggle = !toggle;
int offset = toggle ? -1 : 0;
for(i = 0; i < l.n; i++) {
ear = WRAP(i+offset, l.n);
if(l.elem[ear].ear == SPoint::EAR) {
break;
}
}
if(ear < 0) {
dbp("couldn't find an ear! fail");
return;
}
ClipEarInto(m, ear);
}
ClipEarInto(m, 0); // add the last triangle
}