2013-07-28 22:08:34 +00:00
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Utility functions, mostly various kinds of vector math (working on real
|
|
|
|
// numbers, not working on quantities in the symbolic algebra system).
|
|
|
|
//
|
|
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
|
|
//-----------------------------------------------------------------------------
|
2008-03-27 09:53:51 +00:00
|
|
|
#include "solvespace.h"
|
|
|
|
|
2013-08-26 18:58:35 +00:00
|
|
|
void MakePathRelative(const char *basep, char *pathp)
|
2008-06-25 05:14:49 +00:00
|
|
|
{
|
|
|
|
int i;
|
2013-08-26 18:58:35 +00:00
|
|
|
const char *p;
|
2008-06-25 05:14:49 +00:00
|
|
|
char base[MAX_PATH], path[MAX_PATH], out[MAX_PATH];
|
|
|
|
|
|
|
|
// Convert everything to lowercase
|
|
|
|
p = basep;
|
|
|
|
for(i = 0; *p; p++) {
|
2013-08-26 20:09:15 +00:00
|
|
|
base[i++] = (char)tolower(*p);
|
2008-06-25 05:14:49 +00:00
|
|
|
}
|
|
|
|
base[i++] = '\0';
|
|
|
|
p = pathp;
|
|
|
|
for(i = 0; *p; p++) {
|
2013-08-26 20:09:15 +00:00
|
|
|
path[i++] = (char)tolower(*p);
|
2008-06-25 05:14:49 +00:00
|
|
|
}
|
|
|
|
path[i++] = '\0';
|
|
|
|
|
|
|
|
// Find the length of the common prefix
|
|
|
|
int com;
|
|
|
|
for(com = 0; base[com] && path[com]; com++) {
|
|
|
|
if(base[com] != path[com]) break;
|
|
|
|
}
|
|
|
|
if(!(base[com] && path[com])) return; // weird, prefix is entire string
|
|
|
|
if(com == 0) return; // maybe on different drive letters?
|
|
|
|
|
2008-07-17 05:29:10 +00:00
|
|
|
// Align the common prefix to the nearest slash; otherwise would break
|
|
|
|
// on subdirectories or filenames that shared a prefix.
|
|
|
|
while(com >= 1 && base[com-1] != '/' && base[com-1] != '\\') {
|
|
|
|
com--;
|
|
|
|
}
|
|
|
|
if(com == 0) return;
|
|
|
|
|
2008-06-25 05:14:49 +00:00
|
|
|
int sections = 0;
|
|
|
|
int secLen = 0, secStart = 0;
|
|
|
|
for(i = com; base[i]; i++) {
|
|
|
|
if(base[i] == '/' || base[i] == '\\') {
|
|
|
|
if(secLen == 2 && memcmp(base+secStart, "..", 2)==0) return;
|
|
|
|
if(secLen == 1 && memcmp(base+secStart, ".", 1)==0) return;
|
|
|
|
|
|
|
|
sections++;
|
|
|
|
secLen = 0;
|
|
|
|
secStart = i+1;
|
|
|
|
} else {
|
|
|
|
secLen++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// For every directory in the prefix of the base, we must go down a
|
|
|
|
// directory in the relative path name
|
|
|
|
strcpy(out, "");
|
|
|
|
for(i = 0; i < sections; i++) {
|
|
|
|
strcat(out, "../");
|
|
|
|
}
|
2015-05-21 12:26:29 +00:00
|
|
|
// comparison is case-insensitive, but output preserves input case
|
|
|
|
strcat(out, pathp+com);
|
2008-06-25 05:14:49 +00:00
|
|
|
|
|
|
|
strcpy(pathp, out);
|
|
|
|
}
|
|
|
|
|
2013-08-26 18:58:35 +00:00
|
|
|
void MakePathAbsolute(const char *basep, char *pathp) {
|
2008-06-25 05:14:49 +00:00
|
|
|
char out[MAX_PATH];
|
|
|
|
strcpy(out, basep);
|
|
|
|
|
|
|
|
// Chop off the filename
|
|
|
|
int i;
|
2013-08-26 20:09:15 +00:00
|
|
|
for(i = (int)strlen(out) - 1; i >= 0; i--) {
|
2008-06-25 05:14:49 +00:00
|
|
|
if(out[i] == '\\' || out[i] == '/') break;
|
|
|
|
}
|
|
|
|
if(i < 0) return; // base is not an absolute path, or something?
|
|
|
|
out[i+1] = '\0';
|
|
|
|
|
|
|
|
strcat(out, pathp);
|
|
|
|
GetAbsoluteFilename(out);
|
|
|
|
|
|
|
|
strcpy(pathp, out);
|
|
|
|
}
|
|
|
|
|
2013-08-26 18:58:35 +00:00
|
|
|
bool StringAllPrintable(const char *str)
|
2009-09-18 08:14:15 +00:00
|
|
|
{
|
2013-08-26 18:58:35 +00:00
|
|
|
const char *t;
|
2009-09-18 08:14:15 +00:00
|
|
|
for(t = str; *t; t++) {
|
|
|
|
if(!(isalnum(*t) || *t == '-' || *t == '_')) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2013-08-26 18:58:35 +00:00
|
|
|
bool StringEndsIn(const char *str, const char *ending)
|
2009-10-12 11:34:43 +00:00
|
|
|
{
|
2013-08-26 20:09:15 +00:00
|
|
|
int i, ls = (int)strlen(str), le = (int)strlen(ending);
|
2009-10-12 11:34:43 +00:00
|
|
|
|
|
|
|
if(ls < le) return false;
|
|
|
|
|
|
|
|
for(i = 0; i < le; i++) {
|
|
|
|
if(tolower(ending[le-i-1]) != tolower(str[ls-i-1])) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-03-27 09:53:51 +00:00
|
|
|
void MakeMatrix(double *mat, double a11, double a12, double a13, double a14,
|
|
|
|
double a21, double a22, double a23, double a24,
|
|
|
|
double a31, double a32, double a33, double a34,
|
|
|
|
double a41, double a42, double a43, double a44)
|
|
|
|
{
|
|
|
|
mat[ 0] = a11;
|
|
|
|
mat[ 1] = a21;
|
|
|
|
mat[ 2] = a31;
|
|
|
|
mat[ 3] = a41;
|
|
|
|
mat[ 4] = a12;
|
|
|
|
mat[ 5] = a22;
|
|
|
|
mat[ 6] = a32;
|
|
|
|
mat[ 7] = a42;
|
|
|
|
mat[ 8] = a13;
|
|
|
|
mat[ 9] = a23;
|
|
|
|
mat[10] = a33;
|
|
|
|
mat[11] = a43;
|
|
|
|
mat[12] = a14;
|
|
|
|
mat[13] = a24;
|
|
|
|
mat[14] = a34;
|
|
|
|
mat[15] = a44;
|
|
|
|
}
|
|
|
|
|
2010-01-16 09:22:44 +00:00
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Word-wrap the string for our message box appropriately, and then display
|
|
|
|
// that string.
|
|
|
|
//-----------------------------------------------------------------------------
|
2013-08-26 18:58:35 +00:00
|
|
|
static void DoStringForMessageBox(const char *str, va_list f, bool error)
|
2010-01-16 09:22:44 +00:00
|
|
|
{
|
|
|
|
char inBuf[1024*50];
|
|
|
|
vsprintf(inBuf, str, f);
|
|
|
|
|
|
|
|
char outBuf[1024*50];
|
|
|
|
int i = 0, j = 0, len = 0, longestLen = 47;
|
|
|
|
int rows = 0, cols = 0;
|
|
|
|
|
|
|
|
// Count the width of the longest line that starts with spaces; those
|
|
|
|
// are list items, that should not be split in the middle.
|
|
|
|
bool listLine = false;
|
|
|
|
while(inBuf[i]) {
|
|
|
|
if(inBuf[i] == '\r') {
|
|
|
|
// ignore these
|
|
|
|
} else if(inBuf[i] == ' ' && len == 0) {
|
|
|
|
listLine = true;
|
|
|
|
} else if(inBuf[i] == '\n') {
|
|
|
|
if(listLine) longestLen = max(longestLen, len);
|
|
|
|
len = 0;
|
|
|
|
} else {
|
|
|
|
len++;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
if(listLine) longestLen = max(longestLen, len);
|
|
|
|
|
|
|
|
// Word wrap according to our target line length longestLen.
|
|
|
|
len = 0;
|
|
|
|
i = 0;
|
|
|
|
while(inBuf[i]) {
|
|
|
|
if(inBuf[i] == '\r') {
|
|
|
|
// ignore these
|
|
|
|
} else if(inBuf[i] == '\n') {
|
|
|
|
outBuf[j++] = '\n';
|
|
|
|
if(len == 0) rows++;
|
|
|
|
len = 0;
|
|
|
|
} else if(inBuf[i] == ' ' && len > longestLen) {
|
|
|
|
outBuf[j++] = '\n';
|
|
|
|
len = 0;
|
|
|
|
} else {
|
|
|
|
outBuf[j++] = inBuf[i];
|
|
|
|
// Count rows when we draw the first character; so an empty
|
|
|
|
// row doesn't end up counting.
|
|
|
|
if(len == 0) rows++;
|
|
|
|
len++;
|
|
|
|
}
|
|
|
|
cols = max(cols, len);
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
outBuf[j++] = '\0';
|
|
|
|
|
|
|
|
// And then display the text with our actual longest line length.
|
|
|
|
DoMessageBox(outBuf, rows, cols, error);
|
|
|
|
}
|
2013-08-26 18:58:35 +00:00
|
|
|
void Error(const char *str, ...)
|
2010-01-16 09:22:44 +00:00
|
|
|
{
|
|
|
|
va_list f;
|
|
|
|
va_start(f, str);
|
|
|
|
DoStringForMessageBox(str, f, true);
|
|
|
|
va_end(f);
|
|
|
|
}
|
2013-08-26 18:58:35 +00:00
|
|
|
void Message(const char *str, ...)
|
2010-01-16 09:22:44 +00:00
|
|
|
{
|
|
|
|
va_list f;
|
|
|
|
va_start(f, str);
|
|
|
|
DoStringForMessageBox(str, f, false);
|
|
|
|
va_end(f);
|
|
|
|
}
|
|
|
|
|
Replaced RGB-color integers with dedicated data structure
RGB colors were represented using a uint32_t with the red, green and blue
values stuffed into the lower three octets (i.e. 0x00BBGGRR), like
Microsoft's COLORREF. This approach did not lend itself to type safety,
however, so this change replaces it with an RgbColor class that provides
the same infomation plus a handful of useful methods to work with it. (Note
that sizeof(RgbColor) == sizeof(uint32_t), so this change should not lead
to memory bloat.)
Some of the new methods/fields replace what were previously macro calls;
e.g. RED(c) is now c.red, REDf(c) is now c.redF(). The .Equals() method is
now used instead of == to compare colors.
RGB colors still need to be represented as packed integers in file I/O and
preferences, so the methods .FromPackedInt() and .ToPackedInt() are
provided. Also implemented are Cnf{Freeze,Thaw}Color(), type-safe wrappers
around Cnf{Freeze,Thaw}Int() that facilitate I/O with preferences.
(Cnf{Freeze,Thaw}Color() are defined outside of the system-dependent code
to minimize the footprint of the latter; because the same can be done with
Cnf{Freeze,Thaw}Bool(), those are also moved out of the system code with
this commit.)
Color integers were being OR'ed with 0x80000000 in some places for two
distinct purposes: One, to indicate use of a default color in
glxFillMesh(); this has been replaced by use of the .UseDefault() method.
Two, to indicate to TextWindow::Printf() that the format argument of a
"%Bp"/"%Fp" specifier is an RGB color rather than a color "code" from
TextWindow::bgColors[] or TextWindow::fgColors[] (as the specifier can
accept either); instead, we define a new flag "z" (as in "%Bz" or "%Fz") to
indicate an RGBcolor pointer, leaving "%Bp"/"%Fp" to indicate a color code
exclusively.
(This also allows TextWindow::meta[][].bg to be a char instead of an int,
partly compensating for the new .bgRgb field added immediately after.)
In array declarations, RGB colors could previously be specified as 0 (often
in a terminating element). As that no longer works, we define NULL_COLOR,
which serves much the same purpose for RgbColor variables as NULL serves
for pointers.
2013-10-16 20:00:58 +00:00
|
|
|
void CnfFreezeBool(bool v, const char *name)
|
|
|
|
{ CnfFreezeInt(v ? 1 : 0, name); }
|
|
|
|
|
|
|
|
void CnfFreezeColor(RgbColor v, const char *name)
|
|
|
|
{ CnfFreezeInt(v.ToPackedInt(), name); }
|
|
|
|
|
|
|
|
bool CnfThawBool(bool v, const char *name)
|
|
|
|
{ return CnfThawInt(v ? 1 : 0, name) != 0; }
|
|
|
|
|
|
|
|
RgbColor CnfThawColor(RgbColor v, const char *name)
|
|
|
|
{ return RgbColor::FromPackedInt(CnfThawInt(v.ToPackedInt(), name)); }
|
|
|
|
|
2010-01-16 09:22:44 +00:00
|
|
|
|
2009-10-21 04:46:01 +00:00
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Solve a mostly banded matrix. In a given row, there are LEFT_OF_DIAG
|
|
|
|
// elements to the left of the diagonal element, and RIGHT_OF_DIAG elements to
|
|
|
|
// the right (so that the total band width is LEFT_OF_DIAG + RIGHT_OF_DIAG + 1).
|
|
|
|
// There also may be elements in the last two columns of any row. We solve
|
|
|
|
// without pivoting.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void BandedMatrix::Solve(void) {
|
|
|
|
int i, ip, j, jp;
|
|
|
|
double temp;
|
|
|
|
|
|
|
|
// Reduce the matrix to upper triangular form.
|
|
|
|
for(i = 0; i < n; i++) {
|
|
|
|
for(ip = i+1; ip < n && ip <= (i + LEFT_OF_DIAG); ip++) {
|
|
|
|
temp = A[ip][i]/A[i][i];
|
|
|
|
|
|
|
|
for(jp = i; jp < (n - 2) && jp <= (i + RIGHT_OF_DIAG); jp++) {
|
|
|
|
A[ip][jp] -= temp*(A[i][jp]);
|
|
|
|
}
|
|
|
|
A[ip][n-2] -= temp*(A[i][n-2]);
|
|
|
|
A[ip][n-1] -= temp*(A[i][n-1]);
|
|
|
|
|
|
|
|
B[ip] -= temp*B[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// And back-substitute.
|
|
|
|
for(i = n - 1; i >= 0; i--) {
|
|
|
|
temp = B[i];
|
|
|
|
|
|
|
|
if(i < n-1) temp -= X[n-1]*A[i][n-1];
|
|
|
|
if(i < n-2) temp -= X[n-2]*A[i][n-2];
|
|
|
|
|
|
|
|
for(j = min(n - 3, i + RIGHT_OF_DIAG); j > i; j--) {
|
|
|
|
temp -= X[j]*A[i][j];
|
|
|
|
}
|
|
|
|
X[i] = temp / A[i][i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-03-15 23:04:45 +00:00
|
|
|
const Quaternion Quaternion::IDENTITY = { 1, 0, 0, 0 };
|
|
|
|
|
2008-06-01 08:45:11 +00:00
|
|
|
Quaternion Quaternion::From(double w, double vx, double vy, double vz) {
|
2008-04-18 11:11:48 +00:00
|
|
|
Quaternion q;
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = w;
|
|
|
|
q.vx = vx;
|
|
|
|
q.vy = vy;
|
|
|
|
q.vz = vz;
|
2008-04-18 11:11:48 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
2008-06-02 03:31:37 +00:00
|
|
|
Quaternion Quaternion::From(hParam w, hParam vx, hParam vy, hParam vz) {
|
|
|
|
Quaternion q;
|
2009-04-19 05:53:16 +00:00
|
|
|
q.w = SK.GetParam(w )->val;
|
|
|
|
q.vx = SK.GetParam(vx)->val;
|
|
|
|
q.vy = SK.GetParam(vy)->val;
|
|
|
|
q.vz = SK.GetParam(vz)->val;
|
2008-06-02 03:31:37 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
2009-04-29 02:42:44 +00:00
|
|
|
Quaternion Quaternion::From(Vector axis, double dtheta) {
|
|
|
|
Quaternion q;
|
|
|
|
double c = cos(dtheta / 2), s = sin(dtheta / 2);
|
|
|
|
axis = axis.WithMagnitude(s);
|
|
|
|
q.w = c;
|
|
|
|
q.vx = axis.x;
|
|
|
|
q.vy = axis.y;
|
|
|
|
q.vz = axis.z;
|
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
2008-06-01 08:45:11 +00:00
|
|
|
Quaternion Quaternion::From(Vector u, Vector v)
|
2008-04-18 11:11:48 +00:00
|
|
|
{
|
|
|
|
Vector n = u.Cross(v);
|
|
|
|
|
|
|
|
Quaternion q;
|
2008-05-03 03:33:35 +00:00
|
|
|
double s, tr = 1 + u.x + v.y + n.z;
|
|
|
|
if(tr > 1e-4) {
|
|
|
|
s = 2*sqrt(tr);
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = s/4;
|
|
|
|
q.vx = (v.z - n.y)/s;
|
|
|
|
q.vy = (n.x - u.z)/s;
|
|
|
|
q.vz = (u.y - v.x)/s;
|
2008-05-03 03:33:35 +00:00
|
|
|
} else {
|
2008-02-10 13:34:32 +00:00
|
|
|
if(u.x > v.y && u.x > n.z) {
|
2008-05-03 03:33:35 +00:00
|
|
|
s = 2*sqrt(1 + u.x - v.y - n.z);
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = (v.z - n.y)/s;
|
|
|
|
q.vx = s/4;
|
|
|
|
q.vy = (u.y + v.x)/s;
|
|
|
|
q.vz = (n.x + u.z)/s;
|
2008-02-10 13:34:32 +00:00
|
|
|
} else if(v.y > n.z) {
|
2008-05-03 03:33:35 +00:00
|
|
|
s = 2*sqrt(1 - u.x + v.y - n.z);
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = (n.x - u.z)/s;
|
|
|
|
q.vx = (u.y + v.x)/s;
|
|
|
|
q.vy = s/4;
|
|
|
|
q.vz = (v.z + n.y)/s;
|
2008-02-10 13:34:32 +00:00
|
|
|
} else {
|
2008-05-03 03:33:35 +00:00
|
|
|
s = 2*sqrt(1 - u.x - v.y + n.z);
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = (u.y - v.x)/s;
|
|
|
|
q.vx = (n.x + u.z)/s;
|
|
|
|
q.vy = (v.z + n.y)/s;
|
|
|
|
q.vz = s/4;
|
2008-02-10 13:34:32 +00:00
|
|
|
}
|
2008-05-03 03:33:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return q.WithMagnitude(1);
|
2008-04-18 11:11:48 +00:00
|
|
|
}
|
|
|
|
|
2008-05-05 06:18:01 +00:00
|
|
|
Quaternion Quaternion::Plus(Quaternion b) {
|
2008-04-18 11:11:48 +00:00
|
|
|
Quaternion q;
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = w + b.w;
|
|
|
|
q.vx = vx + b.vx;
|
|
|
|
q.vy = vy + b.vy;
|
|
|
|
q.vz = vz + b.vz;
|
2008-04-18 11:11:48 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
2008-05-05 06:18:01 +00:00
|
|
|
Quaternion Quaternion::Minus(Quaternion b) {
|
2008-04-18 11:11:48 +00:00
|
|
|
Quaternion q;
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = w - b.w;
|
|
|
|
q.vx = vx - b.vx;
|
|
|
|
q.vy = vy - b.vy;
|
|
|
|
q.vz = vz - b.vz;
|
2008-04-18 11:11:48 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion Quaternion::ScaledBy(double s) {
|
|
|
|
Quaternion q;
|
2008-05-05 06:18:01 +00:00
|
|
|
q.w = w*s;
|
|
|
|
q.vx = vx*s;
|
|
|
|
q.vy = vy*s;
|
|
|
|
q.vz = vz*s;
|
2008-04-18 11:11:48 +00:00
|
|
|
return q;
|
|
|
|
}
|
|
|
|
|
|
|
|
double Quaternion::Magnitude(void) {
|
2008-05-05 06:18:01 +00:00
|
|
|
return sqrt(w*w + vx*vx + vy*vy + vz*vz);
|
2008-04-09 08:39:01 +00:00
|
|
|
}
|
|
|
|
|
2008-04-18 11:11:48 +00:00
|
|
|
Quaternion Quaternion::WithMagnitude(double s) {
|
|
|
|
return ScaledBy(s/Magnitude());
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Quaternion::RotationU(void) {
|
2008-04-09 08:39:01 +00:00
|
|
|
Vector v;
|
2008-05-05 06:18:01 +00:00
|
|
|
v.x = w*w + vx*vx - vy*vy - vz*vz;
|
|
|
|
v.y = 2*w *vz + 2*vx*vy;
|
|
|
|
v.z = 2*vx*vz - 2*w *vy;
|
2008-04-09 08:39:01 +00:00
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2008-04-18 11:11:48 +00:00
|
|
|
Vector Quaternion::RotationV(void) {
|
2008-04-09 08:39:01 +00:00
|
|
|
Vector v;
|
2008-05-05 06:18:01 +00:00
|
|
|
v.x = 2*vx*vy - 2*w*vz;
|
|
|
|
v.y = w*w - vx*vx + vy*vy - vz*vz;
|
|
|
|
v.z = 2*w*vx + 2*vy*vz;
|
2008-04-09 08:39:01 +00:00
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2008-05-05 06:18:01 +00:00
|
|
|
Vector Quaternion::RotationN(void) {
|
2008-06-06 07:50:08 +00:00
|
|
|
Vector v;
|
|
|
|
v.x = 2*w*vy + 2*vx*vz;
|
|
|
|
v.y = 2*vy*vz - 2*w*vx;
|
|
|
|
v.z = w*w - vx*vx - vy*vy + vz*vz;
|
|
|
|
return v;
|
2008-05-05 06:18:01 +00:00
|
|
|
}
|
|
|
|
|
2008-05-11 06:09:46 +00:00
|
|
|
Vector Quaternion::Rotate(Vector p) {
|
|
|
|
// Express the point in the new basis
|
|
|
|
return (RotationU().ScaledBy(p.x)).Plus(
|
|
|
|
RotationV().ScaledBy(p.y)).Plus(
|
|
|
|
RotationN().ScaledBy(p.z));
|
|
|
|
}
|
|
|
|
|
2008-05-14 14:23:58 +00:00
|
|
|
Quaternion Quaternion::Inverse(void) {
|
|
|
|
Quaternion r;
|
|
|
|
r.w = w;
|
|
|
|
r.vx = -vx;
|
|
|
|
r.vy = -vy;
|
|
|
|
r.vz = -vz;
|
|
|
|
return r.WithMagnitude(1); // not that the normalize should be reqd
|
|
|
|
}
|
|
|
|
|
|
|
|
Quaternion Quaternion::ToThe(double p) {
|
2008-07-02 09:52:32 +00:00
|
|
|
// Avoid division by zero, or arccos of something not in its domain
|
|
|
|
if(w >= (1 - 1e-6)) {
|
|
|
|
return From(1, 0, 0, 0);
|
|
|
|
} else if(w <= (-1 + 1e-6)) {
|
|
|
|
return From(-1, 0, 0, 0);
|
|
|
|
}
|
|
|
|
|
2008-05-14 14:23:58 +00:00
|
|
|
Quaternion r;
|
2008-06-01 08:45:11 +00:00
|
|
|
Vector axis = Vector::From(vx, vy, vz);
|
2008-05-14 14:23:58 +00:00
|
|
|
double theta = acos(w); // okay, since magnitude is 1, so -1 <= w <= 1
|
|
|
|
theta *= p;
|
|
|
|
r.w = cos(theta);
|
|
|
|
axis = axis.WithMagnitude(sin(theta));
|
|
|
|
r.vx = axis.x;
|
|
|
|
r.vy = axis.y;
|
|
|
|
r.vz = axis.z;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-05-11 06:09:46 +00:00
|
|
|
Quaternion Quaternion::Times(Quaternion b) {
|
|
|
|
double sa = w, sb = b.w;
|
|
|
|
Vector va = { vx, vy, vz };
|
|
|
|
Vector vb = { b.vx, b.vy, b.vz };
|
|
|
|
|
|
|
|
Quaternion r;
|
|
|
|
r.w = sa*sb - va.Dot(vb);
|
|
|
|
Vector vr = vb.ScaledBy(sa).Plus(
|
|
|
|
va.ScaledBy(sb).Plus(
|
|
|
|
va.Cross(vb)));
|
|
|
|
r.vx = vr.x;
|
|
|
|
r.vy = vr.y;
|
|
|
|
r.vz = vr.z;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2009-12-15 12:26:22 +00:00
|
|
|
Quaternion Quaternion::Mirror(void) {
|
2009-10-09 12:57:10 +00:00
|
|
|
Vector u = RotationU(),
|
|
|
|
v = RotationV();
|
2009-12-15 12:26:22 +00:00
|
|
|
u = u.ScaledBy(-1);
|
|
|
|
v = v.ScaledBy(-1);
|
2009-10-09 12:57:10 +00:00
|
|
|
return Quaternion::From(u, v);
|
|
|
|
}
|
|
|
|
|
2008-04-18 11:11:48 +00:00
|
|
|
|
2008-06-01 08:45:11 +00:00
|
|
|
Vector Vector::From(double x, double y, double z) {
|
2008-04-18 11:11:48 +00:00
|
|
|
Vector v;
|
|
|
|
v.x = x; v.y = y; v.z = z;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2008-06-01 08:45:11 +00:00
|
|
|
Vector Vector::From(hParam x, hParam y, hParam z) {
|
2008-06-01 08:29:59 +00:00
|
|
|
Vector v;
|
2009-04-19 05:53:16 +00:00
|
|
|
v.x = SK.GetParam(x)->val;
|
|
|
|
v.y = SK.GetParam(y)->val;
|
|
|
|
v.z = SK.GetParam(z)->val;
|
2008-06-01 08:29:59 +00:00
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
2008-07-06 07:56:24 +00:00
|
|
|
double Vector::Element(int i) {
|
|
|
|
switch(i) {
|
|
|
|
case 0: return x;
|
|
|
|
case 1: return y;
|
|
|
|
case 2: return z;
|
|
|
|
default: oops();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-09-09 05:19:54 +00:00
|
|
|
bool Vector::Equals(Vector v, double tol) {
|
2008-07-06 07:56:24 +00:00
|
|
|
// Quick axis-aligned tests before going further
|
2008-09-09 05:19:54 +00:00
|
|
|
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
|
|
|
|
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
|
|
|
|
double dz = v.z - z; if(dz < -tol || dz > tol) return false;
|
2008-07-06 07:56:24 +00:00
|
|
|
|
2008-09-09 05:19:54 +00:00
|
|
|
return (this->Minus(v)).MagSquared() < tol*tol;
|
2008-07-06 07:56:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool Vector::EqualsExactly(Vector v) {
|
2013-10-21 21:29:25 +00:00
|
|
|
return EXACT(x == v.x &&
|
|
|
|
y == v.y &&
|
|
|
|
z == v.z);
|
2008-04-25 07:04:09 +00:00
|
|
|
}
|
2008-04-18 11:11:48 +00:00
|
|
|
|
2008-04-01 10:48:44 +00:00
|
|
|
Vector Vector::Plus(Vector b) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x + b.x;
|
|
|
|
r.y = y + b.y;
|
|
|
|
r.z = z + b.z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::Minus(Vector b) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x - b.x;
|
|
|
|
r.y = y - b.y;
|
|
|
|
r.z = z - b.z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::Negated(void) {
|
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = -x;
|
|
|
|
r.y = -y;
|
|
|
|
r.z = -z;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
2008-03-27 09:53:51 +00:00
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::Cross(Vector b) {
|
2008-03-27 09:53:51 +00:00
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = -(z*b.y) + (y*b.z);
|
|
|
|
r.y = (z*b.x) - (x*b.z);
|
|
|
|
r.z = -(y*b.x) + (x*b.y);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
double Vector::Dot(Vector b) {
|
2008-03-27 09:53:51 +00:00
|
|
|
return (x*b.x + y*b.y + z*b.z);
|
|
|
|
}
|
|
|
|
|
2009-06-22 06:22:30 +00:00
|
|
|
double Vector::DirectionCosineWith(Vector b) {
|
|
|
|
Vector a = this->WithMagnitude(1);
|
|
|
|
b = b.WithMagnitude(1);
|
|
|
|
return a.Dot(b);
|
|
|
|
}
|
|
|
|
|
2008-04-01 10:48:44 +00:00
|
|
|
Vector Vector::Normal(int which) {
|
|
|
|
Vector n;
|
|
|
|
|
|
|
|
// Arbitrarily choose one vector that's normal to us, pivoting
|
|
|
|
// appropriately.
|
|
|
|
double xa = fabs(x), ya = fabs(y), za = fabs(z);
|
2008-07-08 06:30:13 +00:00
|
|
|
if(this->Equals(Vector::From(0, 0, 1))) {
|
|
|
|
// Make DXFs exported in the XY plane work nicely...
|
|
|
|
n = Vector::From(1, 0, 0);
|
|
|
|
} else if(xa < ya && xa < za) {
|
2008-04-01 10:48:44 +00:00
|
|
|
n.x = 0;
|
|
|
|
n.y = z;
|
|
|
|
n.z = -y;
|
2008-07-08 06:30:13 +00:00
|
|
|
} else if(ya < za) {
|
|
|
|
n.x = -z;
|
2008-04-01 10:48:44 +00:00
|
|
|
n.y = 0;
|
|
|
|
n.z = x;
|
2008-07-08 06:30:13 +00:00
|
|
|
} else {
|
2008-04-01 10:48:44 +00:00
|
|
|
n.x = y;
|
|
|
|
n.y = -x;
|
2008-07-08 06:30:13 +00:00
|
|
|
n.z = 0;
|
|
|
|
}
|
2008-04-01 10:48:44 +00:00
|
|
|
|
|
|
|
if(which == 0) {
|
|
|
|
// That's the vector we return.
|
|
|
|
} else if(which == 1) {
|
|
|
|
n = this->Cross(n);
|
2008-05-05 06:18:01 +00:00
|
|
|
} else oops();
|
2008-04-01 10:48:44 +00:00
|
|
|
|
2008-04-14 10:28:32 +00:00
|
|
|
n = n.WithMagnitude(1);
|
2008-04-01 10:48:44 +00:00
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
2008-06-06 11:35:28 +00:00
|
|
|
Vector Vector::RotatedAbout(Vector orig, Vector axis, double theta) {
|
|
|
|
Vector r = this->Minus(orig);
|
|
|
|
r = r.RotatedAbout(axis, theta);
|
|
|
|
return r.Plus(orig);
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::RotatedAbout(Vector axis, double theta) {
|
2008-03-27 09:53:51 +00:00
|
|
|
double c = cos(theta);
|
|
|
|
double s = sin(theta);
|
|
|
|
|
2008-05-03 03:33:35 +00:00
|
|
|
axis = axis.WithMagnitude(1);
|
|
|
|
|
2008-03-27 09:53:51 +00:00
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = (x)*(c + (1 - c)*(axis.x)*(axis.x)) +
|
|
|
|
(y)*((1 - c)*(axis.x)*(axis.y) - s*(axis.z)) +
|
|
|
|
(z)*((1 - c)*(axis.x)*(axis.z) + s*(axis.y));
|
|
|
|
|
|
|
|
r.y = (x)*((1 - c)*(axis.y)*(axis.x) + s*(axis.z)) +
|
|
|
|
(y)*(c + (1 - c)*(axis.y)*(axis.y)) +
|
|
|
|
(z)*((1 - c)*(axis.y)*(axis.z) - s*(axis.x));
|
|
|
|
|
|
|
|
r.z = (x)*((1 - c)*(axis.z)*(axis.x) - s*(axis.y)) +
|
|
|
|
(y)*((1 - c)*(axis.z)*(axis.y) + s*(axis.x)) +
|
|
|
|
(z)*(c + (1 - c)*(axis.z)*(axis.z));
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-06-21 10:18:20 +00:00
|
|
|
Vector Vector::DotInToCsys(Vector u, Vector v, Vector n) {
|
|
|
|
Vector r = {
|
|
|
|
this->Dot(u),
|
|
|
|
this->Dot(v),
|
|
|
|
this->Dot(n)
|
|
|
|
};
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::ScaleOutOfCsys(Vector u, Vector v, Vector n) {
|
|
|
|
Vector r = u.ScaledBy(x).Plus(
|
|
|
|
v.ScaledBy(y).Plus(
|
|
|
|
n.ScaledBy(z)));
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2009-03-17 16:33:46 +00:00
|
|
|
Vector Vector::InPerspective(Vector u, Vector v, Vector n,
|
|
|
|
Vector origin, double cameraTan)
|
|
|
|
{
|
|
|
|
Vector r = this->Minus(origin);
|
|
|
|
r = r.DotInToCsys(u, v, n);
|
|
|
|
// yes, minus; we are assuming a csys where u cross v equals n, backwards
|
|
|
|
// from the display stuff
|
|
|
|
double w = (1 - r.z*cameraTan);
|
|
|
|
r = r.ScaledBy(1/w);
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-06-06 11:35:28 +00:00
|
|
|
double Vector::DistanceToLine(Vector p0, Vector dp) {
|
|
|
|
double m = dp.Magnitude();
|
|
|
|
return ((this->Minus(p0)).Cross(dp)).Magnitude() / m;
|
|
|
|
}
|
|
|
|
|
2009-06-21 09:02:36 +00:00
|
|
|
bool Vector::OnLineSegment(Vector a, Vector b, double tol) {
|
|
|
|
if(this->Equals(a, tol) || this->Equals(b, tol)) return true;
|
2009-06-04 03:59:40 +00:00
|
|
|
|
2008-07-06 07:56:24 +00:00
|
|
|
Vector d = b.Minus(a);
|
|
|
|
|
|
|
|
double m = d.MagSquared();
|
|
|
|
double distsq = ((this->Minus(a)).Cross(d)).MagSquared() / m;
|
|
|
|
|
2009-06-21 09:02:36 +00:00
|
|
|
if(distsq >= tol*tol) return false;
|
2008-07-06 07:56:24 +00:00
|
|
|
|
|
|
|
double t = (this->Minus(a)).DivPivoting(d);
|
2009-06-04 03:59:40 +00:00
|
|
|
// On-endpoint already tested
|
2008-07-06 07:56:24 +00:00
|
|
|
if(t < 0 || t > 1) return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-06-14 11:16:14 +00:00
|
|
|
Vector Vector::ClosestPointOnLine(Vector p0, Vector dp) {
|
|
|
|
dp = dp.WithMagnitude(1);
|
|
|
|
// this, p0, and (p0+dp) define a plane; the min distance is in
|
|
|
|
// that plane, so calculate its normal
|
|
|
|
Vector pn = (this->Minus(p0)).Cross(dp);
|
|
|
|
// The minimum distance line is in that plane, perpendicular
|
|
|
|
// to the line
|
|
|
|
Vector n = pn.Cross(dp);
|
|
|
|
|
|
|
|
// Calculate the actual distance
|
|
|
|
double d = (dp.Cross(p0.Minus(*this))).Magnitude();
|
|
|
|
return this->Plus(n.WithMagnitude(d));
|
|
|
|
}
|
|
|
|
|
2008-07-06 07:56:24 +00:00
|
|
|
double Vector::MagSquared(void) {
|
|
|
|
return x*x + y*y + z*z;
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
double Vector::Magnitude(void) {
|
2008-03-27 09:53:51 +00:00
|
|
|
return sqrt(x*x + y*y + z*z);
|
|
|
|
}
|
|
|
|
|
2008-03-28 10:00:37 +00:00
|
|
|
Vector Vector::ScaledBy(double v) {
|
2008-03-27 09:53:51 +00:00
|
|
|
Vector r;
|
|
|
|
|
|
|
|
r.x = x * v;
|
|
|
|
r.y = y * v;
|
|
|
|
r.z = z * v;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
2008-04-01 10:48:44 +00:00
|
|
|
|
2008-04-14 10:28:32 +00:00
|
|
|
Vector Vector::WithMagnitude(double v) {
|
|
|
|
double m = Magnitude();
|
2013-10-21 21:29:25 +00:00
|
|
|
if(EXACT(m == 0)) {
|
2009-06-10 08:04:35 +00:00
|
|
|
// We can do a zero vector with zero magnitude, but not any other cases.
|
|
|
|
if(fabs(v) > 1e-100) {
|
2009-07-20 01:47:59 +00:00
|
|
|
dbp("Vector::WithMagnitude(%g) of zero vector!", v);
|
2009-06-10 08:04:35 +00:00
|
|
|
}
|
|
|
|
return From(0, 0, 0);
|
2008-04-14 10:28:32 +00:00
|
|
|
} else {
|
2008-05-26 06:23:05 +00:00
|
|
|
return ScaledBy(v/m);
|
2008-04-14 10:28:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-05-17 11:15:14 +00:00
|
|
|
Vector Vector::ProjectVectorInto(hEntity wrkpl) {
|
2009-04-20 07:30:09 +00:00
|
|
|
EntityBase *w = SK.GetEntity(wrkpl);
|
2008-05-08 07:30:30 +00:00
|
|
|
Vector u = w->Normal()->NormalU();
|
|
|
|
Vector v = w->Normal()->NormalV();
|
2008-05-17 11:15:14 +00:00
|
|
|
|
|
|
|
double up = this->Dot(u);
|
|
|
|
double vp = this->Dot(v);
|
|
|
|
|
|
|
|
return (u.ScaledBy(up)).Plus(v.ScaledBy(vp));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::ProjectInto(hEntity wrkpl) {
|
2009-04-20 07:30:09 +00:00
|
|
|
EntityBase *w = SK.GetEntity(wrkpl);
|
2008-05-08 07:30:30 +00:00
|
|
|
Vector p0 = w->WorkplaneGetOffset();
|
|
|
|
|
|
|
|
Vector f = this->Minus(p0);
|
|
|
|
|
2008-05-17 11:15:14 +00:00
|
|
|
return p0.Plus(f.ProjectVectorInto(wrkpl));
|
2008-05-08 07:30:30 +00:00
|
|
|
}
|
|
|
|
|
2008-05-12 10:01:44 +00:00
|
|
|
Point2d Vector::Project2d(Vector u, Vector v) {
|
|
|
|
Point2d p;
|
|
|
|
p.x = this->Dot(u);
|
|
|
|
p.y = this->Dot(v);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
Point2d Vector::ProjectXy(void) {
|
|
|
|
Point2d p;
|
|
|
|
p.x = x;
|
|
|
|
p.y = y;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2009-04-14 04:19:23 +00:00
|
|
|
Vector4 Vector::Project4d(void) {
|
|
|
|
return Vector4::From(1, x, y, z);
|
|
|
|
}
|
|
|
|
|
2008-05-08 08:12:23 +00:00
|
|
|
double Vector::DivPivoting(Vector delta) {
|
2008-02-10 13:34:32 +00:00
|
|
|
double mx = fabs(delta.x), my = fabs(delta.y), mz = fabs(delta.z);
|
2008-05-08 08:12:23 +00:00
|
|
|
|
2008-02-10 13:34:32 +00:00
|
|
|
if(mx > my && mx > mz) {
|
2008-05-08 08:12:23 +00:00
|
|
|
return x/delta.x;
|
2008-02-10 13:34:32 +00:00
|
|
|
} else if(my > mz) {
|
2008-05-08 08:12:23 +00:00
|
|
|
return y/delta.y;
|
2008-02-10 13:34:32 +00:00
|
|
|
} else {
|
2008-05-08 08:12:23 +00:00
|
|
|
return z/delta.z;
|
2008-02-10 13:34:32 +00:00
|
|
|
}
|
2008-05-08 08:12:23 +00:00
|
|
|
}
|
|
|
|
|
2008-05-11 10:40:37 +00:00
|
|
|
Vector Vector::ClosestOrtho(void) {
|
2008-02-10 13:34:32 +00:00
|
|
|
double mx = fabs(x), my = fabs(y), mz = fabs(z);
|
2008-05-11 10:40:37 +00:00
|
|
|
|
2008-02-10 13:34:32 +00:00
|
|
|
if(mx > my && mx > mz) {
|
2008-06-01 08:45:11 +00:00
|
|
|
return From((x > 0) ? 1 : -1, 0, 0);
|
2008-02-10 13:34:32 +00:00
|
|
|
} else if(my > mz) {
|
2008-06-01 08:45:11 +00:00
|
|
|
return From(0, (y > 0) ? 1 : -1, 0);
|
2008-02-10 13:34:32 +00:00
|
|
|
} else {
|
2008-06-01 08:45:11 +00:00
|
|
|
return From(0, 0, (z > 0) ? 1 : -1);
|
2008-02-10 13:34:32 +00:00
|
|
|
}
|
2008-05-11 10:40:37 +00:00
|
|
|
}
|
|
|
|
|
2010-07-21 05:04:03 +00:00
|
|
|
Vector Vector::ClampWithin(double minv, double maxv) {
|
|
|
|
Vector ret = *this;
|
|
|
|
|
|
|
|
if(ret.x < minv) ret.x = minv;
|
|
|
|
if(ret.y < minv) ret.y = minv;
|
|
|
|
if(ret.z < minv) ret.z = minv;
|
|
|
|
|
|
|
|
if(ret.x > maxv) ret.x = maxv;
|
|
|
|
if(ret.y > maxv) ret.y = maxv;
|
|
|
|
if(ret.z > maxv) ret.z = maxv;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2009-01-21 05:04:38 +00:00
|
|
|
void Vector::MakeMaxMin(Vector *maxv, Vector *minv) {
|
|
|
|
maxv->x = max(maxv->x, x);
|
|
|
|
maxv->y = max(maxv->y, y);
|
|
|
|
maxv->z = max(maxv->z, z);
|
|
|
|
|
|
|
|
minv->x = min(minv->x, x);
|
|
|
|
minv->y = min(minv->y, y);
|
|
|
|
minv->z = min(minv->z, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Vector::OutsideAndNotOn(Vector maxv, Vector minv) {
|
|
|
|
return (x > maxv.x + LENGTH_EPS) || (x < minv.x - LENGTH_EPS) ||
|
|
|
|
(y > maxv.y + LENGTH_EPS) || (y < minv.y - LENGTH_EPS) ||
|
|
|
|
(z > maxv.z + LENGTH_EPS) || (z < minv.z - LENGTH_EPS);
|
|
|
|
}
|
|
|
|
|
2009-01-27 07:59:58 +00:00
|
|
|
bool Vector::BoundingBoxesDisjoint(Vector amax, Vector amin,
|
|
|
|
Vector bmax, Vector bmin)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < 3; i++) {
|
|
|
|
if(amax.Element(i) < bmin.Element(i) - LENGTH_EPS) return true;
|
|
|
|
if(amin.Element(i) > bmax.Element(i) + LENGTH_EPS) return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2009-03-08 10:59:57 +00:00
|
|
|
bool Vector::BoundingBoxIntersectsLine(Vector amax, Vector amin,
|
|
|
|
Vector p0, Vector p1, bool segment)
|
|
|
|
{
|
|
|
|
Vector dp = p1.Minus(p0);
|
|
|
|
double lp = dp.Magnitude();
|
|
|
|
dp = dp.ScaledBy(1.0/lp);
|
|
|
|
|
|
|
|
int i, a;
|
|
|
|
for(i = 0; i < 3; i++) {
|
|
|
|
int j = WRAP(i+1, 3), k = WRAP(i+2, 3);
|
|
|
|
if(lp*fabs(dp.Element(i)) < LENGTH_EPS) continue; // parallel to plane
|
|
|
|
|
|
|
|
for(a = 0; a < 2; a++) {
|
|
|
|
double d = (a == 0) ? amax.Element(i) : amin.Element(i);
|
|
|
|
// n dot (p0 + t*dp) = d
|
|
|
|
// (n dot p0) + t * (n dot dp) = d
|
|
|
|
double t = (d - p0.Element(i)) / dp.Element(i);
|
|
|
|
Vector p = p0.Plus(dp.ScaledBy(t));
|
|
|
|
|
|
|
|
if(segment && (t < -LENGTH_EPS || t > (lp+LENGTH_EPS))) continue;
|
|
|
|
|
|
|
|
if(p.Element(j) > amax.Element(j) + LENGTH_EPS) continue;
|
|
|
|
if(p.Element(k) > amax.Element(k) + LENGTH_EPS) continue;
|
|
|
|
|
|
|
|
if(p.Element(j) < amin.Element(j) - LENGTH_EPS) continue;
|
|
|
|
if(p.Element(k) < amin.Element(k) - LENGTH_EPS) continue;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2008-05-19 09:23:49 +00:00
|
|
|
Vector Vector::AtIntersectionOfPlanes(Vector n1, double d1,
|
|
|
|
Vector n2, double d2)
|
|
|
|
{
|
|
|
|
double det = (n1.Dot(n1))*(n2.Dot(n2)) -
|
|
|
|
(n1.Dot(n2))*(n1.Dot(n2));
|
|
|
|
double c1 = (d1*n2.Dot(n2) - d2*n1.Dot(n2))/det;
|
|
|
|
double c2 = (d2*n1.Dot(n1) - d1*n1.Dot(n2))/det;
|
|
|
|
|
|
|
|
return (n1.ScaledBy(c1)).Plus(n2.ScaledBy(c2));
|
|
|
|
}
|
|
|
|
|
2009-07-07 08:21:59 +00:00
|
|
|
void Vector::ClosestPointBetweenLines(Vector a0, Vector da,
|
|
|
|
Vector b0, Vector db,
|
|
|
|
double *ta, double *tb)
|
2009-01-03 12:27:33 +00:00
|
|
|
{
|
2009-07-07 08:21:59 +00:00
|
|
|
Vector a1 = a0.Plus(da),
|
|
|
|
b1 = a1.Plus(db);
|
2009-01-03 12:27:33 +00:00
|
|
|
|
2009-07-07 08:21:59 +00:00
|
|
|
// Make a semi-orthogonal coordinate system from those directions;
|
|
|
|
// note that dna and dnb need not be perpendicular.
|
2009-01-03 12:27:33 +00:00
|
|
|
Vector dn = da.Cross(db); // normal to both
|
|
|
|
Vector dna = dn.Cross(da); // normal to da
|
|
|
|
Vector dnb = dn.Cross(db); // normal to db
|
|
|
|
|
|
|
|
// At the intersection of the lines
|
|
|
|
// a0 + pa*da = b0 + pb*db (where pa, pb are scalar params)
|
|
|
|
// So dot this equation against dna and dnb to get two equations
|
|
|
|
// to solve for da and db
|
2009-07-07 08:21:59 +00:00
|
|
|
*tb = ((a0.Minus(b0)).Dot(dna))/(db.Dot(dna));
|
|
|
|
*ta = -((a0.Minus(b0)).Dot(dnb))/(da.Dot(dnb));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector::AtIntersectionOfLines(Vector a0, Vector a1,
|
|
|
|
Vector b0, Vector b1,
|
|
|
|
bool *skew,
|
|
|
|
double *parama, double *paramb)
|
|
|
|
{
|
|
|
|
Vector da = a1.Minus(a0), db = b1.Minus(b0);
|
|
|
|
|
|
|
|
double pa, pb;
|
|
|
|
Vector::ClosestPointBetweenLines(a0, da, b0, db, &pa, &pb);
|
|
|
|
|
2009-01-21 05:04:38 +00:00
|
|
|
if(parama) *parama = pa;
|
|
|
|
if(paramb) *paramb = pb;
|
2009-01-03 12:27:33 +00:00
|
|
|
|
|
|
|
// And from either of those, we get the intersection point.
|
|
|
|
Vector pi = a0.Plus(da.ScaledBy(pa));
|
|
|
|
|
|
|
|
if(skew) {
|
|
|
|
// Check if the intersection points on each line are actually
|
|
|
|
// coincident...
|
|
|
|
if(pi.Equals(b0.Plus(db.ScaledBy(pb)))) {
|
|
|
|
*skew = false;
|
|
|
|
} else {
|
|
|
|
*skew = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return pi;
|
|
|
|
}
|
|
|
|
|
2009-02-23 10:06:02 +00:00
|
|
|
Vector Vector::AtIntersectionOfPlaneAndLine(Vector n, double d,
|
|
|
|
Vector p0, Vector p1,
|
|
|
|
bool *parallel)
|
|
|
|
{
|
|
|
|
Vector dp = p1.Minus(p0);
|
|
|
|
|
|
|
|
if(fabs(n.Dot(dp)) < LENGTH_EPS) {
|
|
|
|
if(parallel) *parallel = true;
|
|
|
|
return Vector::From(0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(parallel) *parallel = false;
|
|
|
|
|
|
|
|
// n dot (p0 + t*dp) = d
|
|
|
|
// (n dot p0) + t * (n dot dp) = d
|
|
|
|
double t = (d - n.Dot(p0)) / (n.Dot(dp));
|
|
|
|
|
|
|
|
return p0.Plus(dp.ScaledBy(t));
|
|
|
|
}
|
|
|
|
|
2009-02-27 13:04:36 +00:00
|
|
|
static double det2(double a1, double b1,
|
|
|
|
double a2, double b2)
|
|
|
|
{
|
|
|
|
return (a1*b2) - (b1*a2);
|
|
|
|
}
|
|
|
|
static double det3(double a1, double b1, double c1,
|
|
|
|
double a2, double b2, double c2,
|
|
|
|
double a3, double b3, double c3)
|
|
|
|
{
|
|
|
|
return a1*det2(b2, c2, b3, c3) -
|
|
|
|
b1*det2(a2, c2, a3, c3) +
|
|
|
|
c1*det2(a2, b2, a3, b3);
|
|
|
|
}
|
|
|
|
Vector Vector::AtIntersectionOfPlanes(Vector na, double da,
|
|
|
|
Vector nb, double db,
|
|
|
|
Vector nc, double dc,
|
|
|
|
bool *parallel)
|
|
|
|
{
|
|
|
|
double det = det3(na.x, na.y, na.z,
|
|
|
|
nb.x, nb.y, nb.z,
|
|
|
|
nc.x, nc.y, nc.z);
|
|
|
|
if(fabs(det) < 1e-10) { // arbitrary tolerance, not so good
|
|
|
|
*parallel = true;
|
|
|
|
return Vector::From(0, 0, 0);
|
|
|
|
}
|
|
|
|
*parallel = false;
|
|
|
|
|
|
|
|
double detx = det3(da, na.y, na.z,
|
|
|
|
db, nb.y, nb.z,
|
|
|
|
dc, nc.y, nc.z);
|
|
|
|
|
|
|
|
double dety = det3(na.x, da, na.z,
|
|
|
|
nb.x, db, nb.z,
|
|
|
|
nc.x, dc, nc.z);
|
|
|
|
|
|
|
|
double detz = det3(na.x, na.y, da,
|
|
|
|
nb.x, nb.y, db,
|
|
|
|
nc.x, nc.y, dc );
|
|
|
|
|
|
|
|
return Vector::From(detx/det, dety/det, detz/det);
|
|
|
|
}
|
|
|
|
|
2009-04-14 04:19:23 +00:00
|
|
|
Vector4 Vector4::From(double w, double x, double y, double z) {
|
|
|
|
Vector4 ret;
|
|
|
|
ret.w = w;
|
|
|
|
ret.x = x;
|
|
|
|
ret.y = y;
|
|
|
|
ret.z = z;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector4 Vector4::From(double w, Vector v) {
|
|
|
|
return Vector4::From(w, w*v.x, w*v.y, w*v.z);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector4 Vector4::Blend(Vector4 a, Vector4 b, double t) {
|
|
|
|
return (a.ScaledBy(1 - t)).Plus(b.ScaledBy(t));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector4 Vector4::Plus(Vector4 b) {
|
|
|
|
return Vector4::From(w + b.w, x + b.x, y + b.y, z + b.z);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector4 Vector4::Minus(Vector4 b) {
|
|
|
|
return Vector4::From(w - b.w, x - b.x, y - b.y, z - b.z);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector4 Vector4::ScaledBy(double s) {
|
|
|
|
return Vector4::From(w*s, x*s, y*s, z*s);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector Vector4::PerspectiveProject(void) {
|
|
|
|
return Vector::From(x / w, y / w, z / w);
|
|
|
|
}
|
|
|
|
|
2009-03-14 20:01:20 +00:00
|
|
|
Point2d Point2d::From(double x, double y) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x; r.y = y;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2008-04-12 14:12:26 +00:00
|
|
|
Point2d Point2d::Plus(Point2d b) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x + b.x;
|
|
|
|
r.y = y + b.y;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d Point2d::Minus(Point2d b) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x - b.x;
|
|
|
|
r.y = y - b.y;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d Point2d::ScaledBy(double s) {
|
|
|
|
Point2d r;
|
|
|
|
r.x = x*s;
|
|
|
|
r.y = y*s;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
2009-03-19 17:40:11 +00:00
|
|
|
double Point2d::DivPivoting(Point2d delta) {
|
|
|
|
if(fabs(delta.x) > fabs(delta.y)) {
|
|
|
|
return x/delta.x;
|
|
|
|
} else {
|
|
|
|
return y/delta.y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-02-23 10:06:02 +00:00
|
|
|
double Point2d::MagSquared(void) {
|
|
|
|
return x*x + y*y;
|
|
|
|
}
|
|
|
|
|
2008-04-22 05:00:49 +00:00
|
|
|
double Point2d::Magnitude(void) {
|
|
|
|
return sqrt(x*x + y*y);
|
|
|
|
}
|
|
|
|
|
|
|
|
Point2d Point2d::WithMagnitude(double v) {
|
|
|
|
double m = Magnitude();
|
2009-03-02 05:52:08 +00:00
|
|
|
if(m < 1e-20) {
|
|
|
|
dbp("!!! WithMagnitude() of zero vector");
|
2008-04-22 05:00:49 +00:00
|
|
|
Point2d r = { v, 0 };
|
|
|
|
return r;
|
|
|
|
} else {
|
2009-03-02 05:52:08 +00:00
|
|
|
return ScaledBy(v/m);
|
2008-04-22 05:00:49 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-04-12 14:12:26 +00:00
|
|
|
double Point2d::DistanceTo(Point2d p) {
|
|
|
|
double dx = x - p.x;
|
|
|
|
double dy = y - p.y;
|
|
|
|
return sqrt(dx*dx + dy*dy);
|
|
|
|
}
|
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
double Point2d::Dot(Point2d p) {
|
|
|
|
return x*p.x + y*p.y;
|
|
|
|
}
|
|
|
|
|
2008-04-12 14:12:26 +00:00
|
|
|
double Point2d::DistanceToLine(Point2d p0, Point2d dp, bool segment) {
|
|
|
|
double m = dp.x*dp.x + dp.y*dp.y;
|
2009-02-01 13:01:28 +00:00
|
|
|
if(m < LENGTH_EPS*LENGTH_EPS) return VERY_POSITIVE;
|
2008-04-12 14:12:26 +00:00
|
|
|
|
|
|
|
// Let our line be p = p0 + t*dp, for a scalar t from 0 to 1
|
|
|
|
double t = (dp.x*(x - p0.x) + dp.y*(y - p0.y))/m;
|
|
|
|
|
|
|
|
if((t < 0 || t > 1) && segment) {
|
|
|
|
// The closest point is one of the endpoints; determine which.
|
|
|
|
double d0 = DistanceTo(p0);
|
|
|
|
double d1 = DistanceTo(p0.Plus(dp));
|
|
|
|
|
|
|
|
return min(d1, d0);
|
|
|
|
} else {
|
|
|
|
Point2d closest = p0.Plus(dp.ScaledBy(t));
|
|
|
|
return DistanceTo(closest);
|
|
|
|
}
|
|
|
|
}
|
2008-04-11 11:13:47 +00:00
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
Point2d Point2d::Normal(void) {
|
|
|
|
Point2d ret;
|
|
|
|
ret.x = y;
|
|
|
|
ret.y = -x;
|
|
|
|
return ret;
|
|
|
|
}
|
2008-05-08 07:30:30 +00:00
|
|
|
|
2009-02-23 10:06:02 +00:00
|
|
|
bool Point2d::Equals(Point2d v, double tol) {
|
|
|
|
double dx = v.x - x; if(dx < -tol || dx > tol) return false;
|
|
|
|
double dy = v.y - y; if(dy < -tol || dy > tol) return false;
|
|
|
|
|
|
|
|
return (this->Minus(v)).MagSquared() < tol*tol;
|
|
|
|
}
|
|
|
|
|