solvespace/src/view.cpp

117 lines
3.9 KiB
C++
Raw Normal View History

//-----------------------------------------------------------------------------
// The View menu, stuff to snap to certain special vews of the model, and to
// display our current view of the model to the user.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
void TextWindow::ShowEditView() {
Printf(true, "%Ft3D VIEW PARAMETERS%E");
Printf(true, "%Bd %Ftoverall scale factor%E");
Printf(false, "%Ba %# px/%s %Fl%Ll%f[edit]%E",
SS.GW.scale * SS.MmPerUnit(),
SS.UnitName(),
&ScreenChangeViewScale);
Printf(false, "");
Printf(false, "%Bd %Ftorigin (maps to center of screen)%E");
Printf(false, "%Ba (%s, %s, %s) %Fl%Ll%f[edit]%E",
SS.MmToString(-SS.GW.offset.x).c_str(),
SS.MmToString(-SS.GW.offset.y).c_str(),
SS.MmToString(-SS.GW.offset.z).c_str(),
&ScreenChangeViewOrigin);
Printf(false, "");
Vector n = (SS.GW.projRight).Cross(SS.GW.projUp);
Printf(false, "%Bd %Ftprojection onto screen%E");
Printf(false, "%Ba %Ftright%E (%3, %3, %3) %Fl%Ll%f[edit]%E",
CO(SS.GW.projRight),
&ScreenChangeViewProjection);
Printf(false, "%Bd %Ftup%E (%3, %3, %3)", CO(SS.GW.projUp));
Printf(false, "%Ba %Ftout%E (%3, %3, %3)", CO(n));
Printf(false, "");
Printf(false, "The perspective may be changed in the");
Printf(false, "configuration screen.");
}
void TextWindow::ScreenChangeViewScale(int link, uint32_t v) {
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
SS.TW.edit.meaning = Edit::VIEW_SCALE;
SS.TW.ShowEditControl(3, ssprintf("%.3f", SS.GW.scale * SS.MmPerUnit()));
}
void TextWindow::ScreenChangeViewOrigin(int link, uint32_t v) {
std::string edit_value =
ssprintf("%s, %s, %s",
SS.MmToString(-SS.GW.offset.x).c_str(),
SS.MmToString(-SS.GW.offset.y).c_str(),
SS.MmToString(-SS.GW.offset.z).c_str());
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
SS.TW.edit.meaning = Edit::VIEW_ORIGIN;
SS.TW.ShowEditControl(3, edit_value);
}
void TextWindow::ScreenChangeViewProjection(int link, uint32_t v) {
std::string edit_value =
ssprintf("%.3f, %.3f, %.3f", CO(SS.GW.projRight));
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
SS.TW.edit.meaning = Edit::VIEW_PROJ_RIGHT;
SS.TW.ShowEditControl(10, edit_value);
}
bool TextWindow::EditControlDoneForView(const char *s) {
switch(edit.meaning) {
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
case Edit::VIEW_SCALE: {
Expr *e = Expr::From(s, true);
if(e) {
double v = e->Eval() / SS.MmPerUnit();
if(v > LENGTH_EPS) {
SS.GW.scale = v;
} else {
Error("Scale cannot be zero or negative.");
}
}
break;
}
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
case Edit::VIEW_ORIGIN: {
Vector pt;
if(sscanf(s, "%lf, %lf, %lf", &pt.x, &pt.y, &pt.z) == 3) {
pt = pt.ScaledBy(SS.MmPerUnit());
SS.GW.offset = pt.ScaledBy(-1);
} else {
Error("Bad format: specify x, y, z");
}
break;
}
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
case Edit::VIEW_PROJ_RIGHT:
case Edit::VIEW_PROJ_UP: {
Vector pt;
if(sscanf(s, "%lf, %lf, %lf", &pt.x, &pt.y, &pt.z) != 3) {
Error("Bad format: specify x, y, z");
break;
}
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
if(edit.meaning == Edit::VIEW_PROJ_RIGHT) {
SS.GW.projRight = pt;
SS.GW.NormalizeProjectionVectors();
Convert all enumerations to use `enum class`. Specifically, take the old code that looks like this: class Foo { enum { X = 1, Y = 2 }; int kind; } ... foo.kind = Foo::X; ... and convert it to this: class Foo { enum class Kind : uint32_t { X = 1, Y = 2 }; Kind kind; } ... foo.kind = Foo::Kind::X; (In some cases the enumeration would not be in the class namespace, such as when it is generally useful.) The benefits are as follows: * The type of the field gives a clear indication of intent, both to humans and tools (such as binding generators). * The compiler is able to automatically warn when a switch is not exhaustive; but this is currently suppressed by the default: ssassert(false, ...) idiom. * Integers and plain enums are weakly type checked: they implicitly convert into each other. This can hide bugs where type conversion is performed but not intended. Enum classes are strongly type checked. * Plain enums pollute parent namespaces; enum classes do not. Almost every defined enum we have already has a kind of ad-hoc namespacing via `NAMESPACE_`, which is now explicit. * Plain enums do not have a well-defined ABI size, which is important for bindings. Enum classes can have it, if specified. We specify the base type for all enums as uint32_t, which is a safe choice and allows us to not change the numeric values of any variants. This commit introduces absolutely no functional change to the code, just renaming and change of types. It handles almost all cases, except GraphicsWindow::pending.operation, which needs minor functional change.
2016-05-20 08:31:20 +00:00
edit.meaning = Edit::VIEW_PROJ_UP;
HideEditControl();
ShowEditControl(10, ssprintf("%.3f, %.3f, %.3f", CO(SS.GW.projUp)),
editControl.halfRow + 2);
edit.showAgain = true;
} else {
SS.GW.projUp = pt;
SS.GW.NormalizeProjectionVectors();
}
break;
}
default:
return false;
}
return true;
}