solvespace/srf/surfinter.cpp

522 lines
18 KiB
C++
Raw Normal View History

#include "solvespace.h"
extern int FLAG;
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
SShell *agnstA, SShell *agnstB, SShell *into)
{
SCurve sc;
ZERO(&sc);
sc.surfA = h;
sc.surfB = srfB->h;
sb->MakePwlInto(&(sc.pts));
// Now split the line where it intersects our existing surfaces
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
sc.Clear();
/*
if(sb->deg == 1) {
dbp(" ");
Vector *prev = NULL, *v;
dbp("split.pts.n =%d", split.pts.n);
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
if(prev) {
SS.nakedEdges.AddEdge(*prev, *v);
}
prev = v;
}
} */
split.source = SCurve::FROM_INTERSECTION;
into->curve.AddAndAssignId(&split);
}
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
if((degm == 1 && degn == 1 && b->IsExtrusion(NULL, NULL)) ||
(b->degm == 1 && b->degn == 1 && this->IsExtrusion(NULL, NULL)))
{
// The intersection between a plane and a surface of extrusion
SSurface *splane, *sext;
if(degm == 1 && degn == 1) {
splane = this;
sext = b;
} else {
splane = b;
sext = this;
}
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
double d = n.Dot(splane->PointAt(0, 0));
SBezier bezier;
(void)sext->IsExtrusion(&bezier, &along);
if(fabs(n.Dot(along)) < LENGTH_EPS) {
// Direction of extrusion is parallel to plane; so intersection
// is zero or more lines. Build a line within the plane, and
// normal to the direction of extrusion, and intersect that line
// against the surface; each intersection point corresponds to
// a line.
Vector pm, alu, p0, dp;
// a point halfway along the extrusion
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
alu = along.WithMagnitude(1);
dp = (n.Cross(along)).WithMagnitude(1);
// n, alu, and dp form an orthogonal csys; set n component to
// place it on the plane, alu component to lie halfway along
// extrusion, and dp component doesn't matter so zero
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
List<SInter> inters;
ZERO(&inters);
sext->AllPointsIntersecting(p0, p0.Plus(dp), &inters, false, false);
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector al = along.ScaledBy(0.5);
SBezier bezier;
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
} else {
// Direction of extrusion is not parallel to plane; so
// intersection is projection of extruded curve into our plane.
// If both curves are planes, then we could do it either way;
// so choose the one that generates the shorter curve.
// XXX TODO
int i;
for(i = 0; i <= bezier.deg; i++) {
Vector p0 = bezier.ctrl[i],
p1 = p0.Plus(along);
bezier.ctrl[i] =
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
}
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}
void SSurface::WeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
}
}
}
void SSurface::UnWeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
}
}
}
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
if(row) {
int j;
for(j = 0; j <= degn; j++) {
ctrl [this_ij][j] = src->ctrl [src_ij][j];
weight[this_ij][j] = src->weight[src_ij][j];
}
} else {
int i;
for(i = 0; i <= degm; i++) {
ctrl [i][this_ij] = src->ctrl [i][src_ij];
weight[i][this_ij] = src->weight[i][src_ij];
}
}
}
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij)
{
if(row) {
int j;
for(j = 0; j <= degn; j++) {
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
ctrl [this_ij][j] = c.ScaledBy(0.5);
weight[this_ij][j] = w / 2;
}
} else {
int i;
for(i = 0; i <= degm; i++) {
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
ctrl [i][this_ij] = c.ScaledBy(0.5);
weight[i][this_ij] = w / 2;
}
}
}
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
sa->degm = sb->degm = degm;
sa->degn = sb->degn = degn;
// by de Casteljau's algorithm in a projective space; so we must work
// on points (w*x, w*y, w*z, w)
WeightControlPoints();
switch(byU ? degm : degn) {
case 1:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 1, this, 1);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
break;
case 2:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 2, this, 2);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
break;
case 3: {
SSurface st;
st.degm = degm; st.degn = degn;
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 3, this, 3);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
break;
}
default: oops();
}
sa->UnWeightControlPoints();
sb->UnWeightControlPoints();
UnWeightControlPoints();
}
//-----------------------------------------------------------------------------
// Find all points where the indicated finite (if segment) or infinite (if not
// segment) line intersects our surface. Report them in uv space in the list.
// We first do a bounding box check; if the line doesn't intersect, then we're
// done. If it does, then we check how small our surface is. If it's big,
// then we subdivide into quarters and recurse. If it's small, then we refine
// by Newton's method and record the point.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig)
{
// Test if the line intersects our axis-aligned bounding box; if no, then
// no possibility of an intersection
Vector amax, amin;
GetAxisAlignedBounding(&amax, &amin);
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, segment)) {
// The line segment could fail to intersect the bbox, but lie entirely
// within it and intersect the surface.
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
return;
}
}
if(*cnt > 2000) {
dbp("!!! too many subdivisions (level=%d)!", *level);
return;
}
(*cnt)++;
// If we might intersect, and the surface is small, then switch to Newton
// iterations.
double h = max(amax.x - amin.x,
max(amax.y - amin.y,
amax.z - amin.z));
if(fabs(h) < SS.ChordTolMm()) {
Vector p = (amax.Plus(amin)).ScaledBy(0.5);
Inter inter;
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
// Debug check, verify that the point lies in both surfaces
// (which it ought to, since the surfaces should be coincident)
double u, v;
ClosestPointTo(p, &u, &v);
l->Add(&inter);
} else {
// Might not converge if line is almost tangent to surface...
}
return;
}
// But the surface is big, so split it, alternating by u and v
SSurface surf0, surf1;
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
int nextLevel = (*level) + 1;
(*level) = nextLevel;
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
(*level) = nextLevel;
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
}
//-----------------------------------------------------------------------------
// Find all points where a line through a and b intersects our surface, and
// add them to the list. If seg is true then report only intersections that
// lie within the finite line segment (not including the endpoints); otherwise
// we work along the infinite line.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l, bool seg, bool trimmed)
{
Vector ba = b.Minus(a);
double bam = ba.Magnitude();
List<Inter> inters;
ZERO(&inters);
// First, get all the intersections between the infinite ray and the
// untrimmed surface.
int cnt = 0, level = 0;
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
// Remove duplicate intersection points
inters.ClearTags();
int i, j;
for(i = 0; i < inters.n; i++) {
for(j = i + 1; j < inters.n; j++) {
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
inters.elem[j].tag = 1;
}
}
}
inters.RemoveTagged();
for(i = 0; i < inters.n; i++) {
Point2d puv = inters.elem[i].p;
// Make sure the point lies within the finite line segment
Vector pxyz = PointAt(puv.x, puv.y);
double t = (pxyz.Minus(a)).DivPivoting(ba);
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
continue;
}
// And that it lies inside our trim region
Point2d dummy = { 0, 0 };
int c = bsp->ClassifyPoint(puv, dummy);
if(trimmed && c == SBspUv::OUTSIDE) {
continue;
}
// It does, so generate the intersection
SInter si;
si.p = pxyz;
si.surfNormal = NormalAt(puv.x, puv.y);
si.hsrf = h;
si.srf = this;
si.onEdge = (c != SBspUv::INSIDE);
l->Add(&si);
}
inters.Clear();
}
void SShell::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *il, bool seg, bool trimmed)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il, seg, trimmed);
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? It might be inside or outside, or
// it might be on the surface with pout parallel or anti-parallel to the
// intersecting surface's normal.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
int SShell::ClassifyPoint(Vector p, Vector pout) {
List<SInter> l;
ZERO(&l);
srand(0);
int ret, cnt = 0, edge_inters;
double edge_dotp[2];
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
AllPointsIntersecting(p.Minus(ray), p.Plus(ray), &l, false, true);
double dmin = VERY_POSITIVE;
ret = OUTSIDE; // no intersections means it's outside
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// Handle edge-on-edge
if(d < LENGTH_EPS && si->onEdge && edge_inters < 2) {
edge_dotp[edge_inters] = (si->surfNormal).Dot(pout);
edge_inters++;
}
if(d < dmin) {
dmin = d;
if(d < LENGTH_EPS) {
// Edge-on-face (unless edge-on-edge above supercedes)
if((si->surfNormal).Dot(pout) > 0) {
ret = SURF_PARALLEL;
} else {
ret = SURF_ANTIPARALLEL;
}
} else {
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
ret = INSIDE;
} else {
ret = OUTSIDE;
}
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if((edge_inters == 2) || !onEdge) break;
if(cnt++ > 20) {
dbp("can't find a ray that doesn't hit on edge!");
break;
}
}
if(edge_inters == 2) {
double tol = 1e-3;
if(edge_dotp[0] > -tol && edge_dotp[1] > -tol) {
return EDGE_PARALLEL;
} else if(edge_dotp[0] < tol && edge_dotp[1] < tol) {
return EDGE_ANTIPARALLEL;
} else {
return EDGE_TANGENT;
}
} else {
return ret;
}
}
//-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only.
//-----------------------------------------------------------------------------
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
if(degm != 1 || degn != 1) return false;
if(ss->degm != 1 || ss->degn != 1) return false;
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if(!ss->CoincidentWithPlane(n, d)) return false;
Vector n2 = ss->NormalAt(0, 0);
if(sameNormal) {
if(n2.Dot(n) < 0) return false;
} else {
if(n2.Dot(n) > 0) return false;
}
return true;
}
bool SSurface::CoincidentWithPlane(Vector n, double d) {
if(degm != 1 || degn != 1) return false;
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
return true;
}
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
if(proto->CoincidentWith(ss, sameNormal)) {
ss->MakeEdgesInto(this, el, false);
}
}
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
double ua, va, ub, vb;
proto->ClosestPointTo(se->a, &ua, &va);
proto->ClosestPointTo(se->b, &ub, &vb);
if(sameNormal) {
se->a = Vector::From(ua, va, 0);
se->b = Vector::From(ub, vb, 0);
} else {
// Flip normal, so flip all edge directions
se->b = Vector::From(ua, va, 0);
se->a = Vector::From(ub, vb, 0);
}
}
}