solvespace/srf/surfinter.cpp

260 lines
8.8 KiB
C++
Raw Normal View History

#include "solvespace.h"
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Plane-plane intersection, easy; result is a line
Vector pta = ctrl[0][0], ptb = b->ctrl[0][0];
Vector na = NormalAt(0, 0), nb = b->NormalAt(0, 0);
na = na.WithMagnitude(1);
nb = nb.WithMagnitude(1);
Vector d = (na.Cross(nb));
if(d.Magnitude() < LENGTH_EPS) {
// parallel planes, no intersection
return;
}
Vector inter = Vector::AtIntersectionOfPlanes(na, na.Dot(pta),
nb, nb.Dot(ptb));
// The intersection curve can't be longer than the longest curve
// that lies in both planes, which is the diagonal of the shorter;
// so just pick one, and then give some slop, not critical.
double maxl = ((ctrl[0][0]).Minus(ctrl[1][1])).Magnitude();
Vector v;
SCurve sc;
ZERO(&sc);
sc.surfA = h;
sc.surfB = b->h;
v = inter.Minus(d.WithMagnitude(5*maxl));
sc.pts.Add(&v);
v = inter.Plus(d.WithMagnitude(5*maxl));
sc.pts.Add(&v);
// Now split the line where it intersects our existing surfaces
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB);
sc.Clear();
split.interCurve = true;
into->curve.AddAndAssignId(&split);
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}
void SSurface::AllPointsIntersecting(Vector a, Vector b, List<SInter> *l) {
if(degm == 1 && degn == 1) {
// line-plane intersection
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if((n.Dot(a) - d < -LENGTH_EPS && n.Dot(b) - d > LENGTH_EPS) ||
(n.Dot(b) - d < -LENGTH_EPS && n.Dot(a) - d > LENGTH_EPS))
{
// It crosses the plane, one point of intersection
// (a + t*(b - a)) dot n = d
// (a dot n) + t*((b - a) dot n) = d
// t = (d - (a dot n))/((b - a) dot n)
double t = (d - a.Dot(n)) / ((b.Minus(a)).Dot(n));
Vector pi = a.Plus((b.Minus(a)).ScaledBy(t));
Point2d puv, dummy = { 0, 0 };
ClosestPointTo(pi, &(puv.x), &(puv.y));
int c = bsp->ClassifyPoint(puv, dummy);
if(c != SBspUv::OUTSIDE) {
SInter si;
si.p = pi;
si.surfNormal = NormalAt(puv.x, puv.y);
si.surface = h;
si.onEdge = (c != SBspUv::INSIDE);
l->Add(&si);
}
}
}
}
void SShell::AllPointsIntersecting(Vector a, Vector b, List<SInter> *il) {
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il);
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? It might be inside or outside, or
// it might be on the surface with pout parallel or anti-parallel to the
// intersecting surface's normal.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
int SShell::ClassifyPoint(Vector p, Vector pout) {
List<SInter> l;
ZERO(&l);
srand(0);
int ret, cnt = 0, edge_inters;
double edge_dotp[2];
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
ray = ray.WithMagnitude(1e4);
AllPointsIntersecting(p.Minus(ray), p.Plus(ray), &l);
double dmin = VERY_POSITIVE;
ret = OUTSIDE; // no intersections means it's outside
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// Handle edge-on-edge
if(d < LENGTH_EPS && si->onEdge && edge_inters < 2) {
edge_dotp[edge_inters] = (si->surfNormal).Dot(pout);
edge_inters++;
}
if(d < dmin) {
dmin = d;
if(d < LENGTH_EPS) {
// Edge-on-face (unless edge-on-edge above supercedes)
if((si->surfNormal).Dot(pout) > 0) {
ret = SURF_PARALLEL;
} else {
ret = SURF_ANTIPARALLEL;
}
} else {
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
ret = INSIDE;
} else {
ret = OUTSIDE;
}
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if((edge_inters == 2) || !onEdge) break;
if(cnt++ > 20) {
dbp("can't find a ray that doesn't hit on edge!");
break;
}
}
if(edge_inters == 2) {
double tol = 1e-3;
if(edge_dotp[0] > -tol && edge_dotp[1] > -tol) {
return EDGE_PARALLEL;
} else if(edge_dotp[0] < tol && edge_dotp[1] < tol) {
return EDGE_ANTIPARALLEL;
} else {
return EDGE_TANGENT;
}
} else {
return ret;
}
}
//-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only.
//-----------------------------------------------------------------------------
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
if(degm != 1 || degn != 1) return false;
if(ss->degm != 1 || ss->degn != 1) return false;
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if(!ss->CoincidentWithPlane(n, d)) return false;
Vector n2 = ss->NormalAt(0, 0);
if(sameNormal) {
if(n2.Dot(n) < 0) return false;
} else {
if(n2.Dot(n) > 0) return false;
}
return true;
}
bool SSurface::CoincidentWithPlane(Vector n, double d) {
if(degm != 1 || degn != 1) return false;
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
return true;
}
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
if(proto->CoincidentWith(ss, sameNormal)) {
ss->MakeEdgesInto(this, el, false);
}
}
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
double ua, va, ub, vb;
proto->ClosestPointTo(se->a, &ua, &va);
proto->ClosestPointTo(se->b, &ub, &vb);
if(sameNormal) {
se->a = Vector::From(ua, va, 0);
se->b = Vector::From(ub, vb, 0);
} else {
// Flip normal, so flip all edge directions
se->b = Vector::From(ua, va, 0);
se->a = Vector::From(ub, vb, 0);
}
}
}