2009-01-27 07:59:58 +00:00
|
|
|
#include "solvespace.h"
|
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
|
|
|
|
SShell *into)
|
|
|
|
{
|
2009-01-27 07:59:58 +00:00
|
|
|
Vector amax, amin, bmax, bmin;
|
|
|
|
GetAxisAlignedBounding(&amax, &amin);
|
|
|
|
b->GetAxisAlignedBounding(&bmax, &bmin);
|
|
|
|
|
|
|
|
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
|
|
|
|
// They cannot possibly intersect, no curves to generate
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
|
|
|
|
// Plane-plane intersection, easy; result is a line
|
|
|
|
Vector pta = ctrl[0][0], ptb = b->ctrl[0][0];
|
|
|
|
Vector na = NormalAt(0, 0), nb = b->NormalAt(0, 0);
|
|
|
|
na = na.WithMagnitude(1);
|
|
|
|
nb = nb.WithMagnitude(1);
|
|
|
|
|
|
|
|
Vector d = (na.Cross(nb));
|
|
|
|
|
|
|
|
if(d.Magnitude() < LENGTH_EPS) {
|
|
|
|
// parallel planes, no intersection
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector inter = Vector::AtIntersectionOfPlanes(na, na.Dot(pta),
|
|
|
|
nb, nb.Dot(ptb));
|
|
|
|
|
|
|
|
// The intersection curve can't be longer than the longest curve
|
|
|
|
// that lies in both planes, which is the diagonal of the shorter;
|
|
|
|
// so just pick one, and then give some slop, not critical.
|
|
|
|
double maxl = ((ctrl[0][0]).Minus(ctrl[1][1])).Magnitude();
|
|
|
|
|
|
|
|
Vector v;
|
|
|
|
SCurve sc;
|
|
|
|
ZERO(&sc);
|
|
|
|
sc.surfA = h;
|
|
|
|
sc.surfB = b->h;
|
2009-02-01 05:13:43 +00:00
|
|
|
v = inter.Minus(d.WithMagnitude(5*maxl));
|
2009-01-27 07:59:58 +00:00
|
|
|
sc.pts.Add(&v);
|
2009-02-01 05:13:43 +00:00
|
|
|
v = inter.Plus(d.WithMagnitude(5*maxl));
|
2009-01-27 07:59:58 +00:00
|
|
|
sc.pts.Add(&v);
|
2009-02-01 05:13:43 +00:00
|
|
|
|
2009-01-27 07:59:58 +00:00
|
|
|
// Now split the line where it intersects our existing surfaces
|
2009-02-01 05:13:43 +00:00
|
|
|
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB);
|
2009-01-27 07:59:58 +00:00
|
|
|
sc.Clear();
|
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
split.interCurve = true;
|
2009-01-27 07:59:58 +00:00
|
|
|
into->curve.AddAndAssignId(&split);
|
|
|
|
}
|
|
|
|
|
|
|
|
// need to implement general numerical surface intersection for tough
|
|
|
|
// cases, just giving up for now
|
|
|
|
}
|
|
|
|
|
2009-02-01 05:13:43 +00:00
|
|
|
void SSurface::AllPointsIntersecting(Vector a, Vector b, List<Vector> *l) {
|
|
|
|
if(degm == 1 && degn == 1) {
|
|
|
|
// line-plane intersection
|
|
|
|
Vector p = ctrl[0][0];
|
|
|
|
Vector n = NormalAt(0, 0).WithMagnitude(1);
|
|
|
|
double d = n.Dot(p);
|
|
|
|
if((n.Dot(a) - d < -LENGTH_EPS && n.Dot(b) - d > LENGTH_EPS) ||
|
|
|
|
(n.Dot(b) - d < -LENGTH_EPS && n.Dot(a) - d > LENGTH_EPS))
|
|
|
|
{
|
|
|
|
// It crosses the plane, one point of intersection
|
|
|
|
// (a + t*(b - a)) dot n = d
|
|
|
|
// (a dot n) + t*((b - a) dot n) = d
|
|
|
|
// t = (d - (a dot n))/((b - a) dot n)
|
|
|
|
double t = (d - a.Dot(n)) / ((b.Minus(a)).Dot(n));
|
|
|
|
Vector pi = a.Plus((b.Minus(a)).ScaledBy(t));
|
|
|
|
Point2d puv, dummy = { 0, 0 };
|
|
|
|
ClosestPointTo(pi, &(puv.x), &(puv.y));
|
|
|
|
if(bsp->ClassifyPoint(puv, dummy) != SBspUv::OUTSIDE) {
|
|
|
|
l->Add(&pi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SShell::AllPointsIntersecting(Vector a, Vector b, List<Vector> *il) {
|
|
|
|
SSurface *ss;
|
|
|
|
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
|
|
|
|
ss->AllPointsIntersecting(a, b, il);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|