solvespace/polygon.cpp

307 lines
7.5 KiB
C++
Raw Normal View History

#include "solvespace.h"
Vector STriangle::Normal(void) {
Vector ab = b.Minus(a), bc = c.Minus(b);
return ab.Cross(bc);
}
bool STriangle::ContainsPoint(Vector p) {
Vector n = Normal();
return ContainsPointProjd(n.WithMagnitude(1), p);
}
bool STriangle::ContainsPointProjd(Vector n, Vector p) {
Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c);
Vector no_ab = n.Cross(ab);
if(no_ab.Dot(p) < no_ab.Dot(a) - LENGTH_EPS) return false;
Vector no_bc = n.Cross(bc);
if(no_bc.Dot(p) < no_bc.Dot(b) - LENGTH_EPS) return false;
Vector no_ca = n.Cross(ca);
if(no_ca.Dot(p) < no_ca.Dot(c) - LENGTH_EPS) return false;
return true;
}
STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) {
STriangle tr = { 0, meta, a, b, c };
return tr;
}
SEdge SEdge::From(Vector a, Vector b) {
SEdge se = { 0, a, b };
return se;
}
void SEdgeList::Clear(void) {
l.Clear();
}
void SEdgeList::AddEdge(Vector a, Vector b) {
SEdge e; ZERO(&e);
e.a = a;
e.b = b;
l.Add(&e);
}
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
dest->Clear();
for(;;) {
Vector first, last;
int i;
for(i = 0; i < l.n; i++) {
if(!l.elem[i].tag) {
first = l.elem[i].a;
last = l.elem[i].b;
l.elem[i].tag = 1;
break;
}
}
if(i >= l.n) {
return true;
}
dest->AddEmptyContour();
dest->AddPoint(first);
dest->AddPoint(last);
do {
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(se->a.Equals(last)) {
dest->AddPoint(se->b);
last = se->b;
se->tag = 1;
break;
}
if(se->b.Equals(last)) {
dest->AddPoint(se->a);
last = se->a;
se->tag = 1;
break;
}
}
if(i >= l.n) {
// Couldn't assemble a closed contour; mark where.
if(errorAt) {
errorAt->a = first;
errorAt->b = last;
}
return false;
}
} while(!last.Equals(first));
}
}
void SContour::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < (l.n-1); i++) {
SEdge e;
e.tag = 0;
e.a = l.elem[i].p;
e.b = l.elem[i+1].p;
el->l.Add(&e);
}
}
Vector SContour::ComputeNormal(void) {
Vector n = Vector::From(0, 0, 0);
for(int i = 0; i < l.n - 2; i++) {
Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1);
Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1);
Vector nt = u.Cross(v);
if(nt.Magnitude() > n.Magnitude()) {
n = nt;
}
}
return n.WithMagnitude(1);
}
bool SContour::IsClockwiseProjdToNormal(Vector n) {
// Degenerate things might happen as we draw; doesn't really matter
// what we do then.
if(n.Magnitude() < 0.01) return true;
// An arbitrary 2d coordinate system that has n as its normal
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double area = 0;
for(int i = 0; i < (l.n - 1); i++) {
double u0 = (l.elem[i ].p).Dot(u);
double v0 = (l.elem[i ].p).Dot(v);
double u1 = (l.elem[i+1].p).Dot(u);
double v1 = (l.elem[i+1].p).Dot(v);
area += ((v0 + v1)/2)*(u1 - u0);
}
return (area < 0);
}
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double up = p.Dot(u);
double vp = p.Dot(v);
bool inside = false;
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
// The curve needs to be exactly closed; approximation is death.
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
if ((((va <= vp) && (vp < vb)) ||
((vb <= vp) && (vp < va))) &&
(up < (ub - ua) * (vp - va) / (vb - va) + ua))
{
inside = !inside;
}
}
return inside;
}
void SContour::Reverse(void) {
int i;
for(i = 0; i < (l.n / 2); i++) {
int i2 = (l.n - 1) - i;
SPoint t = l.elem[i2];
l.elem[i2] = l.elem[i];
l.elem[i] = t;
}
}
void SPolygon::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).l.Clear();
}
l.Clear();
}
void SPolygon::AddEmptyContour(void) {
SContour c;
memset(&c, 0, sizeof(c));
l.Add(&c);
}
void SPolygon::AddPoint(Vector p) {
if(l.n < 1) oops();
SPoint sp;
sp.tag = 0;
sp.p = p;
// Add to the last contour in the list
(l.elem[l.n-1]).l.Add(&sp);
}
void SPolygon::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).MakeEdgesInto(el);
}
}
Vector SPolygon::ComputeNormal(void) {
if(l.n < 1) return Vector::From(0, 0, 0);
return (l.elem[0]).ComputeNormal();
}
bool SPolygon::ContainsPoint(Vector p) {
bool inside = false;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->ContainsPointProjdToNormal(normal, p)) {
inside = !inside;
}
}
return inside;
}
void SPolygon::FixContourDirections(void) {
// Outside curve looks counterclockwise, projected against our normal.
int i, j;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->l.n < 1) continue;
Vector pt = (sc->l.elem[0]).p;
bool outer = true;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SContour *sct = &(l.elem[j]);
if(sct->ContainsPointProjdToNormal(normal, pt)) {
outer = !outer;
}
}
bool clockwise = sc->IsClockwiseProjdToNormal(normal);
if(clockwise && outer || (!clockwise && !outer)) {
sc->Reverse();
}
}
}
static int TriMode, TriVertexCount;
static Vector Tri1, TriNMinus1, TriNMinus2;
static Vector TriNormal;
static SMesh *TriMesh;
static void GLX_CALLBACK TriBegin(int mode)
{
TriMode = mode;
TriVertexCount = 0;
}
static void GLX_CALLBACK TriEnd(void)
{
}
static void GLX_CALLBACK TriVertex(Vector *triN)
{
if(TriVertexCount == 0) {
Tri1 = *triN;
}
if(TriMode == GL_TRIANGLES) {
if((TriVertexCount % 3) == 2) {
TriMesh->AddTriangle(TriNormal, TriNMinus2, TriNMinus1, *triN);
}
} else if(TriMode == GL_TRIANGLE_FAN) {
if(TriVertexCount >= 2) {
TriMesh->AddTriangle(TriNormal, Tri1, TriNMinus1, *triN);
}
} else if(TriMode == GL_TRIANGLE_STRIP) {
if(TriVertexCount >= 2) {
TriMesh->AddTriangle(TriNormal, TriNMinus2, TriNMinus1, *triN);
}
} else oops();
TriNMinus2 = TriNMinus1;
TriNMinus1 = *triN;
TriVertexCount++;
}
void SPolygon::TriangulateInto(SMesh *m) {
TriMesh = m;
TriNormal = normal;
GLUtesselator *gt = gluNewTess();
gluTessCallback(gt, GLU_TESS_BEGIN, (glxCallbackFptr *)TriBegin);
gluTessCallback(gt, GLU_TESS_END, (glxCallbackFptr *)TriEnd);
gluTessCallback(gt, GLU_TESS_VERTEX, (glxCallbackFptr *)TriVertex);
glxTesselatePolygon(gt, this);
gluDeleteTess(gt);
}